找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[復(fù)制鏈接]
樓主: Glitch
31#
發(fā)表于 2025-3-27 00:12:28 | 只看該作者
Preparing Your Service for Exporttial patterns of traffic flow. Notably, STS2ANet simultaneously learns the tightly coupled spatial-temporal patterns and their divergence over time, resulting in accurate OD prediction. Extensive experiments have been conducted in a real-world dataset, and the results demonstrate the performance superiority of STS2ANet against baselines.
32#
發(fā)表于 2025-3-27 03:02:14 | 只看該作者
https://doi.org/10.1007/978-981-16-2968-6results by matching with recent traffic data. We conduct experiments on two real-world datasets, and the results demonstrate that STMGF outperforms all baseline models and achieves state-of-the-art performance.
33#
發(fā)表于 2025-3-27 06:06:25 | 只看該作者
Trajectory Completion via?Context-Guided Neural Filtering and?Encodingen, . learns time-aware encodings of these trajectories by a newly proposed time-aware recurrent unit. Moreover, a popularity-weighted attention mechanism is proposed to complete the missing locations. Extensive experiments on four datasets show that . outperforms competitive baselines with up to 25% relative improvements.
34#
發(fā)表于 2025-3-27 09:52:53 | 只看該作者
35#
發(fā)表于 2025-3-27 14:56:56 | 只看該作者
36#
發(fā)表于 2025-3-27 21:11:18 | 只看該作者
STMGF: An Effective Spatial-Temporal Multi-granularity Framework for?Traffic Forecastingresults by matching with recent traffic data. We conduct experiments on two real-world datasets, and the results demonstrate that STMGF outperforms all baseline models and achieves state-of-the-art performance.
37#
發(fā)表于 2025-3-27 22:28:48 | 只看該作者
38#
發(fā)表于 2025-3-28 05:44:43 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:48 | 只看該作者
Trajectory Completion via?Context-Guided Neural Filtering and?Encodingoften highly sparse and incomplete, which has become a key bottleneck that limits the applicability of trajectory analysis techniques. While many existing sequential models are seemingly applicable to the trajectory completion problem, they often suffer severely from data sparsity and irregularity a
40#
發(fā)表于 2025-3-28 14:29:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
星子县| 鄂伦春自治旗| 康乐县| 庄河市| 如皋市| 岑巩县| 汤阴县| 锡林郭勒盟| 文登市| 洛宁县| 乾安县| 绥德县| 商河县| 葵青区| 宕昌县| 望奎县| 石河子市| 修文县| 孟村| 苍梧县| 固阳县| 特克斯县| 东安县| 天津市| 隆林| 盐山县| 孟州市| 西贡区| 栾城县| 天等县| 闸北区| 灌阳县| 瑞安市| 泰兴市| 永昌县| 淅川县| 光山县| 普安县| 青海省| 长海县| 井陉县|