找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science in Engineering Vol. 10; Proceedings of the 4 Thomas Matarazzo,Fran?ois Hemez,Austin Downey Conference proceedings 2025 The Soc

[復(fù)制鏈接]
樓主: Lampoon
51#
發(fā)表于 2025-3-30 09:27:34 | 只看該作者
Optimal Modeling of Deep Groove Ball Bearings for Application in Multibody Dynamics Simulations, bearing model. The system’s response is examined by means of signal analysis as well as by using deep learning methods in order to characterize the health state of the system, thus proving the applicability of the present bearing modeling method for condition monitoring applications.
52#
發(fā)表于 2025-3-30 15:38:51 | 只看該作者
Utilization of Bridge Acceleration Response for Indirect Strain Sensing,h our novel approach, we can estimate strain with high accuracy from acceleration data and reconstruct rainflow cycle counting diagrams that can subsequently be used for bridge condition and life cycle assessment.
53#
發(fā)表于 2025-3-30 16:46:22 | 只看該作者
54#
發(fā)表于 2025-3-30 22:40:57 | 只看該作者
55#
發(fā)表于 2025-3-31 02:47:18 | 只看該作者
56#
發(fā)表于 2025-3-31 08:40:02 | 只看該作者
On the Use of Symbolic Regression for Population-Based Modelling of Structures,that of symbolic regression and the transfer is attempted between an extensively monitored structure and a data-poor structure for a regression application. The methodology is applied in a prognosis problem of crack growth in metal plates, and the results reveal the potential of symbolic regression
57#
發(fā)表于 2025-3-31 13:00:28 | 只看該作者
Identification of Bird Species in Large Multi-channel Data Streams Using Distributed Acoustic Sensi benefit that DAS does not suffer from time synchronization errors and remote power issues like traditional microphone arrays. This work investigates the performance of DAS when used to detect bird calls, with particular focus on the Great Horned Owl (GHO), an indicator species for prey vulnerabilit
58#
發(fā)表于 2025-3-31 13:55:37 | 只看該作者
59#
發(fā)表于 2025-3-31 19:06:48 | 只看該作者
Adaptive Radio Frequency Target Localization,blem as a Partially Observable Markov Decision Process (POMDP) and was solved through the use of particle filtering and reinforcement learning. The purpose of this work is to build upon this prior study by training a deep neural network in a simulated environment and applying inference in the real w
60#
發(fā)表于 2025-3-31 23:22:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
醴陵市| 九江县| 安平县| 永登县| 望江县| 元阳县| 阳新县| 广宁县| 平和县| 普兰店市| 安宁市| 唐河县| 万年县| 金坛市| 府谷县| 南雄市| 抚顺县| 金秀| 祁连县| 利川市| 阜平县| 社旗县| 磐石市| 额尔古纳市| 景泰县| 永仁县| 汨罗市| 承德市| 博罗县| 油尖旺区| 乐东| 普陀区| 华坪县| 宁乡县| 芦溪县| 绥化市| 申扎县| 和田县| 海原县| 翼城县| 曲阳县|