找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of One-Dimensional Maps; A. N. Sharkovsky,S. F. Kolyada,V. V. Fedorenko Book 1997 Springer Science+Business Media Dordrecht 1997

[復(fù)制鏈接]
樓主: vein220
11#
發(fā)表于 2025-3-23 10:40:03 | 只看該作者
12#
發(fā)表于 2025-3-23 17:47:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:21:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:23:55 | 只看該作者
The phase space of dynamical systems under consideration, i.e., the interval ., is endowed with Lebesgue measure. It is thus useful to establish some properties of dynamical systems that are typical with respect to this measure, i.e., properties exhibited by trajectories covering sets of full measure.
15#
發(fā)表于 2025-3-24 05:45:16 | 只看該作者
Let . be a continuous map and let . = {β., β., ..., β.} be its cycle of period .≥1. One can distinguish between two types of stability of the cycle ., namely, between stability under perturbations of the initial data and stability under perturbations of the map. First, we consider the first type of stability.
16#
發(fā)表于 2025-3-24 08:57:54 | 只看該作者
Elements of Symbolic Dynamics,Symbolic dynamics is a part of the general theory of dynamical systems dealing with cascades generated by shifts in various spaces of sequences . where θ. are letters of an alphabet . = {θ., θ., ..., θ.} The methods of symbolic dynamics are now widely applied to the investigation of various types of dynamical systems.
17#
發(fā)表于 2025-3-24 14:22:08 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:19 | 只看該作者
19#
發(fā)表于 2025-3-24 20:41:16 | 只看該作者
Local Stability of Invariant Sets. Structural Stability of Unimodal Maps,Let . be a continuous map and let . = {β., β., ..., β.} be its cycle of period .≥1. One can distinguish between two types of stability of the cycle ., namely, between stability under perturbations of the initial data and stability under perturbations of the map. First, we consider the first type of stability.
20#
發(fā)表于 2025-3-24 23:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万山特区| 徐州市| 丘北县| 大渡口区| 衡阳县| 聂荣县| 洞口县| 枞阳县| 水富县| 环江| 阳高县| 东乌| 甘孜县| 乃东县| 韩城市| 东乡县| 五原县| 洛浦县| 海丰县| 乐亭县| 乃东县| 交口县| 弥渡县| 淮安市| 高雄县| 社旗县| 澎湖县| 铁力市| 黎平县| 呼伦贝尔市| 务川| 湘潭县| 吉木萨尔县| 平乐县| 平湖市| 商河县| 定日县| 博白县| 托里县| 高平市| 蓬莱市|