找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Extremal Black Holes; Stefanos Aretakis Book 2018 The Author(s) 2018 Einstein equations.Extremal Reissner-Nordstrom black hole

[復(fù)制鏈接]
樓主: 空格
11#
發(fā)表于 2025-3-23 09:47:32 | 只看該作者
12#
發(fā)表于 2025-3-23 16:15:12 | 只看該作者
Introduction to General Relativity and Black Hole DynamicsIn this Chapter we provide the general framework for curved spaces and introduce the notions of Lorentzian geometry which are necessary for understanding the mathematical aspects of general relativity and black hole dynamics. We also present rigorous results on the asymptotics of linear perturbations for sub-extremal black holes.
13#
發(fā)表于 2025-3-23 18:42:42 | 只看該作者
Extremal Reissner–Nordstr?m Black HolesIn this Chapter we thoroughly review the geometry of extremal Reissner–Nordstr?m black holes. We also present the main results on the asymptotics of linear perturbations on such backgrounds.
14#
發(fā)表于 2025-3-24 00:13:54 | 只看該作者
15#
發(fā)表于 2025-3-24 02:52:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:21 | 只看該作者
A Theory of Conservation Laws on Null HypersurfacesIn this Chapter we present a theory of conservation laws on null hypersurfaces in general Lorentzian manifolds. These conservation laws are a generalization of the conservation laws on extremal event horizons. We also review their relevance to the characteristic gluing problem and provide necessary and sufficient conditions for their existence.
17#
發(fā)表于 2025-3-24 12:49:08 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:43 | 只看該作者
https://doi.org/10.1007/978-3-319-95183-6Einstein equations; Extremal Reissner-Nordstrom black holes; Extremal Kerr black holes; Lorentzian geom
19#
發(fā)表于 2025-3-24 23:03:47 | 只看該作者
20#
發(fā)表于 2025-3-25 02:27:01 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/e/image/284076.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沈丘县| 商河县| 扬州市| 淳安县| 濮阳市| 石城县| 呼和浩特市| 武宁县| 宿州市| 深水埗区| 买车| 贵定县| 广南县| 射阳县| 滕州市| 博乐市| 成武县| 红桥区| 龙州县| 深泽县| 沂水县| 唐山市| 鄂尔多斯市| 五常市| 阳新县| 定结县| 巍山| 德化县| 湛江市| 棋牌| 文成县| 噶尔县| 富川| 卓资县| 竹山县| 宁陵县| 舞阳县| 南澳县| 夹江县| 通河县| 南涧|