找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps; A Functional Approac Viviane Baladi Book 2018 Springer Internation

[復制鏈接]
樓主: 呻吟
21#
發(fā)表于 2025-3-25 06:50:39 | 只看該作者
22#
發(fā)表于 2025-3-25 11:17:44 | 只看該作者
Dynamical determinants for smooth hyperbolic dynamicseighted dynamical determinant, giving a lower bound on the disc in which this determinant is analytic and where its zeroes admit a spectral interpretation. We apply the results obtained on the weighted dynamical determinant to study the dynamical zeta function.
23#
發(fā)表于 2025-3-25 14:01:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:51:57 | 只看該作者
ZinnThis chapter describes a third scale of anisotropic Banach spaces of distributions, for which the best known bounds on the essential spectral radius of the transfer operator are known, improving those given in Chapter 4. The last section implements the Gou?zel-Keller-Liverani perturbation theory for this third type of Banach spaces.
25#
發(fā)表于 2025-3-25 20:09:07 | 只看該作者
A variational formula for the essential spectral radiusThis chapter describes a third scale of anisotropic Banach spaces of distributions, for which the best known bounds on the essential spectral radius of the transfer operator are known, improving those given in Chapter 4. The last section implements the Gou?zel-Keller-Liverani perturbation theory for this third type of Banach spaces.
26#
發(fā)表于 2025-3-26 01:43:20 | 只看該作者
27#
發(fā)表于 2025-3-26 08:18:54 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematihttp://image.papertrans.cn/e/image/283915.jpg
28#
發(fā)表于 2025-3-26 11:06:04 | 只看該作者
Manganmics and weights, replacing the H?lder spaces by Sobolev spaces. The chapter ends with the Gou?zel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.
29#
發(fā)表于 2025-3-26 13:26:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:57:18 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 19:15
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东阿县| 吉林省| 清苑县| 宕昌县| 都安| 兰考县| 青岛市| 商水县| 台前县| 临邑县| 龙里县| 江孜县| 彭阳县| 孟州市| 祁连县| 永丰县| 聂拉木县| 许昌市| 木兰县| 峡江县| 富阳市| 门源| 临夏县| 玉门市| 灵武市| 贡觉县| 林西县| 阿城市| 肥乡县| 洪湖市| 平谷区| 晋江市| 阆中市| 从江县| 海晏县| 綦江县| 江北区| 罗源县| 永春县| 巴中市| 巫溪县|