找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems of Algebraic Origin; Klaus Schmidt Book 1995 Birkh?user Verlag 1995 Group Theory.Lie groups

[復制鏈接]
樓主: Exaltation
21#
發(fā)表于 2025-3-25 06:42:54 | 只看該作者
978-3-0348-9957-4Birkh?user Verlag 1995
22#
發(fā)表于 2025-3-25 08:23:24 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/e/image/283889.jpg
23#
發(fā)表于 2025-3-25 15:26:47 | 只看該作者
24#
發(fā)表于 2025-3-25 17:46:32 | 只看該作者
25#
發(fā)表于 2025-3-25 21:10:40 | 只看該作者
26#
發(fā)表于 2025-3-26 02:06:00 | 只看該作者
Positive entropy,We begin this section with a brief discussion of entropy for a single automorphism . of a compact group ., in which we prove that every ergodic automorphism of an infinite, compact group has positive entropy, and that automorphisms with zero entropy have a very degenerate structure.
27#
發(fā)表于 2025-3-26 06:58:05 | 只看該作者
Entropie,al matrix group over the complex numbers. Any metric . on a compact group X is assumed to be invariant, i.e. . for all ., and to induce the topology of .. The identity element of a group . will usually be written as ., ., or . ., depending on whether . is multiplicative or additive, and whether ther
28#
發(fā)表于 2025-3-26 11:40:39 | 只看該作者
Zweck und Ziele der Wirtschaftsinformatik,.10), Propositions 4.9-4.10, Remark 4.15, and Theorem 4.11. Just as compact, abelian groups like . = ?./?. have automorphisms with very intricate dynamical properties, there is an abundance of examples of interesting ?.-actions by automorphisms of compact abelian groups. In this section we introduce
29#
發(fā)表于 2025-3-26 13:38:13 | 只看該作者
30#
發(fā)表于 2025-3-26 18:57:58 | 只看該作者
,So klingt unsere Stimme für andere,(Definition 5.5), and Example 5.6 (1) shows that the d.c.c. cannot be dropped in general. In this section we investigate the density of the set of periodic points for a ?.-action . by automorphisms of compact group . satisfying the d.c.c. We begin with two examples which show that—if . is non-abelia
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
青铜峡市| 双桥区| 高陵县| 香格里拉县| 龙山县| 泸西县| 惠水县| 吴堡县| 开封县| 永济市| 太康县| 巧家县| 汝州市| 河间市| 拉孜县| 东山县| 连山| 射阳县| 共和县| 远安县| 扎鲁特旗| 堆龙德庆县| 江北区| 当涂县| 偏关县| 梁山县| 紫阳县| 元谋县| 中宁县| 八宿县| 崇礼县| 桐庐县| 周口市| 广丰县| 汕头市| 乐昌市| 黄山市| 南乐县| 桂平市| 舟曲县| 南皮县|