找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamical Systems VII; Integrable Systems N V. I. Arnol’d,S. P. Novikov Book 1994 Springer-Verlag Berlin Heidelberg 1994 Hamiltonian System

[復(fù)制鏈接]
樓主: 吸收
11#
發(fā)表于 2025-3-23 13:05:23 | 只看該作者
,Glas und seine vielf?ltigen Anwendungen,A pair (.) consisting of a 2.-dimensional manifold . together with a closed 2-form . is called a . if the form . is nondegenerate, i.e. if .. = . ∧ · ... · . ? 0.
12#
發(fā)表于 2025-3-23 16:32:39 | 只看該作者
IntroductionA nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term ‘holonomic’ is due to Hertz and means ‘universal’, ‘integral’, ‘integrable’ (literally, . -entire, . - law). ‘Nonholonomic’ is therefore a synonym of ‘nonintegrable’.
13#
發(fā)表于 2025-3-23 18:13:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:22:25 | 只看該作者
Integrable Systems and Finite-Dimensional Lie AlgebrasIn this survey we consider integrable systems whose construction makes use of root systems of simple (usually finite-dimensional) Lie algebras.
15#
發(fā)表于 2025-3-24 02:58:11 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:24 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:02:44 | 只看該作者
Herz, Kreislauf und H?modynamiknomic distribution. The solutions to this problem, the nonholonomic geodesics, satisfy the Euler-Lagrange equations of a conditional problem. They generate a nonholonomic geodesic flow defined on the mixed bundle which is the direct sum of the distribution and its annihilator in the cotangent bundle
19#
發(fā)表于 2025-3-24 21:40:28 | 只看該作者
Intraven?se An?sthetika und Benzodiazepinet-invariant nonholonomic distribution. Our main subject is the study of the nonholonomic geodesic flow (NG-flow), more precisely, of the nonholonomic sphere, of the wave front (Section 1), and of the general dynamical properties of the flow (Section 2). The mixed bundle for Lie groups is the direct
20#
發(fā)表于 2025-3-25 00:34:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松原市| 兴和县| 和龙市| 孟州市| 当阳市| 南宫市| 华蓥市| 互助| 黎城县| 青田县| 彭山县| 绥宁县| 安乡县| 灵璧县| 常熟市| 苏尼特右旗| 晋城| 上高县| 林甸县| 灵武市| 武隆县| 凭祥市| 海宁市| 南安市| 乌恰县| 桃江县| 绵阳市| 正蓝旗| 吉林市| 绿春县| 涡阳县| 金昌市| 望江县| 江陵县| 固始县| 丁青县| 瓮安县| 航空| 寿光市| 雅安市| 柳州市|