找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Topology; Gordon Whyburn,Edwin Duda Textbook 1979 Springer-Verlag New York Inc. 1979 Area.Metrization theorem.Topologie.algebra.al

[復(fù)制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 10:59:26 | 只看該作者
12#
發(fā)表于 2025-3-23 17:47:44 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:26 | 只看該作者
Methode,A set M in a metric space is said to have . if and only if for every . 0, M is the union of a finite number of connected sets, each of diameter less than ..
14#
發(fā)表于 2025-3-24 00:10:44 | 只看該作者
Die marxistische WirtschaftstheorieA sequence ... in a metric space is said to be a . if for every . 0 there exists an integer . such that if ., then ....) < ..
15#
發(fā)表于 2025-3-24 04:37:55 | 只看該作者
Sets and Operations with SetsWe shall somewhat imprecisely consider a set to be a collection of objects which satisfy a certain property. This is by no means a rigorous definition, and strictly speaking we shall not define the term set. We shall instead assume that the reader has an intuitive feeling for what constitutes a set and proceed accordingly.
16#
發(fā)表于 2025-3-24 08:33:18 | 只看該作者
SpacesA . is a set . of elements together with a distinguished class of subsets called open sets satisfying the following axioms:
17#
發(fā)表于 2025-3-24 14:39:33 | 只看該作者
Compact Sets and Bolzano-Weierstrass SetsA set . in a topological space . is said to be . if and only if any collection [G] of open sets covering . (i.e., ∪G ? .) has a finite subcollection also covering .
18#
發(fā)表于 2025-3-24 15:20:41 | 只看該作者
FunctionsIf . and . are two topological spaces, a . from . to . is any law which assigns to each element of . a unique element of . The action of this law is represented by . = ., where . ? . ?..
19#
發(fā)表于 2025-3-24 21:16:57 | 只看該作者
20#
發(fā)表于 2025-3-25 01:01:38 | 只看該作者
Diameters and DistancesFor any set ., the .(.) is the l.u.b. (finite or infinite) of the aggregate of numbers [.(x, y)] for . ? ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
勃利县| 鹤庆县| 宁化县| 长武县| 武威市| 佛山市| 临朐县| 江陵县| 金门县| 海兴县| 北安市| 广河县| 江川县| 福州市| 榆树市| 禹州市| 饶平县| 抚松县| 尚义县| 汉寿县| 庐江县| 承德市| 临武县| 云阳县| 南皮县| 交城县| 满洲里市| 宁河县| 屏东市| 安义县| 临泽县| 文水县| 荆门市| 文山县| 东兰县| 鄂尔多斯市| 卫辉市| 青阳县| 聂荣县| 尉犁县| 包头市|