找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamic Network Representation Based on Latent Factorization of Tensors; Hao Wu,Xuke Wu,Xin Luo Book 2023 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: Disaster
11#
發(fā)表于 2025-3-23 10:38:39 | 只看該作者
12#
發(fā)表于 2025-3-23 16:35:49 | 只看該作者
13#
發(fā)表于 2025-3-23 18:27:02 | 只看該作者
K,ter vision and other fields [1–5]. For a third-order HDI tensor modeling a dynamic network, this book carry out some preliminary research on latent factorization of tensors methods to implement accurate representation for dynamic networks. Further, in real industrial applications, in order to tackle
14#
發(fā)表于 2025-3-24 01:39:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:42 | 只看該作者
https://doi.org/10.1007/978-981-19-8934-6Dynamic network representation; Latent factorization of tensors; High-dimensional and incomplete tenso
16#
發(fā)表于 2025-3-24 08:03:03 | 只看該作者
978-981-19-8933-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
17#
發(fā)表于 2025-3-24 13:20:29 | 只看該作者
Hao Wu,Xuke Wu,Xin LuoExposes readers to a novel research perspective regarding dynamic network representation.Presents four dynamic network representation methods based on latent factorization of tensors.Accomplishes accu
18#
發(fā)表于 2025-3-24 15:26:44 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/e/image/283681.jpg
19#
發(fā)表于 2025-3-24 20:54:50 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:29 | 只看該作者
Multiple Biases-Incorporated Latent Factorization of Tensors,tion on extracting useful knowledge form an HDI tensor. However, existing LFT-based models lack solid consideration for the volatility of dynamic network data, thereby leading to the descent of model representation learning ability. To tackle this problem, this chapter proposes a multiple biases-inc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 06:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤阴县| 盐亭县| 濮阳市| 县级市| 平泉县| 筠连县| 扎兰屯市| 泸溪县| 东阿县| 华亭县| 仙居县| 百色市| 基隆市| 新兴县| 富民县| 儋州市| 永平县| 呼图壁县| 台东市| 汨罗市| 广昌县| 东海县| 南充市| 苗栗市| 喜德县| 新闻| 聂荣县| 娄底市| 株洲市| 梁平县| 手游| 县级市| 缙云县| 陇西县| 闽清县| 锦州市| 普陀区| 桂东县| 秀山| 新安县| 高唐县|