找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Modules; Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur

[復制鏈接]
樓主: 游牧
21#
發(fā)表于 2025-3-25 04:52:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:05 | 只看該作者
Algebraic Preliminaries,sis on the concepts that are particularly important in this book, such as the ring of polynomials, modules over this ring, algebraic and inseparable field extensions, finite fields, and central simple algebras.
23#
發(fā)表于 2025-3-25 12:42:14 | 只看該作者
24#
發(fā)表于 2025-3-25 17:17:23 | 只看該作者
Basic Properties of Drinfeld Modules, . acts via certain linearized polynomials in .[.]. In this chapter, we study the basic properties of Drinfeld modules which are valid over arbitrary fields. Later in the book we will be interested in the properties of Drinfeld modules defined over arithmetically interesting fields, such as finite f
25#
發(fā)表于 2025-3-25 20:13:23 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:55 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:37 | 只看該作者
Chen Change Loy,Ping Luo,Chen Huangsome basic notions of analysis in the setting of complete non-Archimedean fields, such as the radius of convergence of a power series, the Weierstrass factorization theorem, and the existence and distribution of zeros of entire functions.
28#
發(fā)表于 2025-3-26 09:30:00 | 只看該作者
Textbook 2023irst two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic
29#
發(fā)表于 2025-3-26 16:20:27 | 只看該作者
30#
發(fā)表于 2025-3-26 18:26:47 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-23 11:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
郑州市| 石首市| 福贡县| 沙坪坝区| 鲁山县| 庆云县| 邵武市| 凉山| 沙雅县| 常宁市| 淮南市| 定边县| 洪湖市| 碌曲县| 太和县| 萨嘎县| 姜堰市| 南溪县| 盘锦市| 成安县| 治县。| 和平区| 界首市| 尉氏县| 阳江市| 晋中市| 莱阳市| 新宁县| 五峰| 台湾省| 丹东市| 建瓯市| 修武县| 沁阳市| 湖南省| 山东省| 香港| 元氏县| 阜城县| 图们市| 黄大仙区|