找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Modules; Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur

[復(fù)制鏈接]
樓主: 游牧
21#
發(fā)表于 2025-3-25 04:52:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:05 | 只看該作者
Algebraic Preliminaries,sis on the concepts that are particularly important in this book, such as the ring of polynomials, modules over this ring, algebraic and inseparable field extensions, finite fields, and central simple algebras.
23#
發(fā)表于 2025-3-25 12:42:14 | 只看該作者
24#
發(fā)表于 2025-3-25 17:17:23 | 只看該作者
Basic Properties of Drinfeld Modules, . acts via certain linearized polynomials in .[.]. In this chapter, we study the basic properties of Drinfeld modules which are valid over arbitrary fields. Later in the book we will be interested in the properties of Drinfeld modules defined over arithmetically interesting fields, such as finite f
25#
發(fā)表于 2025-3-25 20:13:23 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:55 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:37 | 只看該作者
Chen Change Loy,Ping Luo,Chen Huangsome basic notions of analysis in the setting of complete non-Archimedean fields, such as the radius of convergence of a power series, the Weierstrass factorization theorem, and the existence and distribution of zeros of entire functions.
28#
發(fā)表于 2025-3-26 09:30:00 | 只看該作者
Textbook 2023irst two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic
29#
發(fā)表于 2025-3-26 16:20:27 | 只看該作者
30#
發(fā)表于 2025-3-26 18:26:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克什克腾旗| 呼玛县| 岑溪市| 汝城县| 龙泉市| 北票市| 志丹县| 陕西省| 桃源县| 凤凰县| 乌海市| 历史| 佛山市| 凤城市| 綦江县| 南开区| 安乡县| 泾源县| 灵宝市| 搜索| 南康市| 通化县| 上蔡县| 南充市| 青铜峡市| 德昌县| 肇东市| 阆中市| 黄陵县| 麟游县| 长武县| 余庆县| 喀什市| 清水河县| 邛崃市| 永昌县| 秦安县| 香河县| 绥芬河市| 青田县| 沁水县|