找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Theory, Logic and Computation; Proceedings of the 2 G Q Zhang,J. Lawson,M.-K. Luo Conference proceedings 2003 Springer Science+Busin

[復(fù)制鏈接]
樓主: lumbar-puncture
31#
發(fā)表于 2025-3-26 23:39:26 | 只看該作者
Raquel Pastor Pastor,Henrik Legind Larsentational semantics. The purpose of the paper is to provide a gentle introduction to these notions, and to advocate a particular point of view which makes significant use of them. The main ideas here are not new, though our expository slant is somewhat novel, and some of our examples lead to seemingl
32#
發(fā)表于 2025-3-27 02:01:25 | 只看該作者
https://doi.org/10.1007/978-3-319-53160-1them and we identify in convergence terms when a convergence space coincides with a convergence class. We examine the basic operators in the Vienna Development Method of formal systems development, namely, extension, glueing, restriction, removal and override, from the perspective of the Logic for C
33#
發(fā)表于 2025-3-27 08:07:08 | 只看該作者
Joakim Holmlund,Bj?rn Nilsson,Johan R?nnbythe Scott topology simply as cl. (↓. ∩ ↓.) = ↓. whenever . ≤ ∨ .. Since the meet operator is not involved, the topological property of meet-continuity can be naturally extended to general dcpos. Such dcpos are also called meet-continuous in this note. It turns out that there exist close relations am
34#
發(fā)表于 2025-3-27 10:34:12 | 只看該作者
35#
發(fā)表于 2025-3-27 14:26:58 | 只看該作者
Roland Bloch,Alexander Mitterle,Tobias Peter in this paper. It is proved that the regular projective quantales are weakly multiplication-stable completely distributive lattices and multiplication-stable completely distributive lattices are regular projective quantales. For the class . of all onto quantale homomorphisms whose right adjoints pr
36#
發(fā)表于 2025-3-27 18:53:52 | 只看該作者
37#
發(fā)表于 2025-3-28 00:19:39 | 只看該作者
38#
發(fā)表于 2025-3-28 02:36:32 | 只看該作者
39#
發(fā)表于 2025-3-28 06:41:26 | 只看該作者
40#
發(fā)表于 2025-3-28 12:21:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 02:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙城县| 阳新县| 梓潼县| 宁安市| 宁南县| 呈贡县| 兴安县| 绍兴县| 白玉县| 北安市| 达州市| 中阳县| 白银市| 湄潭县| 扬州市| 榕江县| 遂宁市| 龙里县| 磴口县| 潮安县| 房产| 沛县| 沂水县| 文化| 郓城县| 高唐县| 汝南县| 南部县| 贡嘎县| 天镇县| 大田县| 来凤县| 宜宾县| 宁德市| 江西省| 新乐市| 海淀区| 嘉荫县| 山西省| 清徐县| 加查县|