找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Decomposition Methods in Science and Engineering XXII; Thomas Dickopf,Martin J. Gander,Luca F. Pavarino Conference proceedings 2016

[復(fù)制鏈接]
樓主: Autopsy
51#
發(fā)表于 2025-3-30 09:51:46 | 只看該作者
52#
發(fā)表于 2025-3-30 12:24:12 | 只看該作者
53#
發(fā)表于 2025-3-30 19:29:15 | 只看該作者
The Great Gorges: Slices Through Timepresent an abstraction that hides this non-locality and allows the user to implement his Domain Decomposition strategy in a clear mathematical setting. The mathematical concept admits an easy implementation of a wide range of Domain Decomposition methods, without the necessity to directly deal with the aspects of parallel computations.
54#
發(fā)表于 2025-3-31 00:24:31 | 只看該作者
BDDC Deluxe for Isogeometric Analysis also used as the PDEs discrete basis, following an isoparametric paradigm; see the monograph [10]. Recent works on IGA preconditioners have focused on overlapping Schwarz preconditioners [3, 5, 7, 9], multigrid methods [16], and non-overlapping preconditioners [4, 8, 20].
55#
發(fā)表于 2025-3-31 02:22:14 | 只看該作者
A Nonlinear FETI-DP Method with an Inexact Coarse Problemlability if the number of subdomains is large. If the coarse solver is exact and the method is applied to linear problems then the method is equivalent to the standard FETI-DP method. Numerical results for up to 32,768 cores are presented using cycles of an algebraic multigrid for the coarse problem of the new method.
56#
發(fā)表于 2025-3-31 08:38:25 | 只看該作者
Substructuring Methods in Nonlinear Function Spacesundles. We derive various solution algorithms based on preconditioned Richardson iterations for a nonlinear Steklov–Poincaré formulation. Preconditioners appear as bundle homomorphisms. As a numerical example we compute the deformation of a geometrically exact Cosserat shell with a Neumann–Neumann algorithm.
57#
發(fā)表于 2025-3-31 10:26:36 | 只看該作者
58#
發(fā)表于 2025-3-31 13:59:26 | 只看該作者
59#
發(fā)表于 2025-3-31 18:49:20 | 只看該作者
BDDC Deluxe Domain Decomposition ., which restores the continuity of the approximate solution across the interface between the subdomains into which the domain of the given problem has been partitioned. We will also refer to these operators as ..
60#
發(fā)表于 2025-4-1 01:20:05 | 只看該作者
Some Geometric and Algebraic Aspects of Domain Decomposition Methodsg domain decomposition for overlapping subdomains is presented. Subdomain SLAEs are solved by a direct or iterative preconditioned method in Krylov subspaces, whereas external iterations are performed by the FGMRES method. An experimental analysis of the algorithms is carried out on a set of model problems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆元县| 泗阳县| 台江县| 哈巴河县| 宣恩县| 景德镇市| 衡阳市| 浦城县| 沙洋县| 兴城市| 旬阳县| 湖州市| 加查县| 临桂县| 阳原县| 丹棱县| 正定县| 莱州市| 江川县| 县级市| 军事| 闸北区| 临猗县| 湘潭市| 射洪县| 苗栗市| 宝应县| 监利县| 措美县| 玛纳斯县| 辽阳县| 马鞍山市| 和田市| 永宁县| 涿鹿县| 武安市| 清苑县| 方城县| 宜章县| 三亚市| 开江县|