找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation in Computer Vision Applications; Gabriela Csurka Book 2017 Springer International Publishing AG 2017 Computer Vision.Vis

[復(fù)制鏈接]
樓主: 歸納
41#
發(fā)表于 2025-3-28 15:03:16 | 只看該作者
42#
發(fā)表于 2025-3-28 20:53:25 | 只看該作者
43#
發(fā)表于 2025-3-29 00:21:33 | 只看該作者
https://doi.org/10.1007/978-3-031-34398-8rning and DA techniques, and we study their generalization properties to parts from unseen classes when they are learned from a limited number of domains and example images. One of our conclusions is that, for a majority of the domains, part annotations transfer well, and that, performance of the se
44#
發(fā)表于 2025-3-29 03:12:43 | 只看該作者
Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation hand, we propose . of a kernel that discriminatively combines multiple base GFKs to model the source and the target domains at fine-grained granularities. In particular, each base kernel pivots on a different set of landmarks—the most useful data instances that reveal the similarity between the sou
45#
發(fā)表于 2025-3-29 08:41:59 | 只看該作者
46#
發(fā)表于 2025-3-29 12:31:13 | 只看該作者
Correlation Alignment for Unsupervised Domain Adaptationl but the number and dimensionality of target examples are very high. The resulting CORAL Linear Discriminant Analysis (CORAL-LDA)outperforms LDA by a large margin on standard domain adaptation benchmarks. Finally, we extend CORAL to learn a nonlinear transformation that aligns correlations of layer
47#
發(fā)表于 2025-3-29 16:37:46 | 只看該作者
48#
發(fā)表于 2025-3-29 23:31:45 | 只看該作者
49#
發(fā)表于 2025-3-30 00:12:55 | 只看該作者
50#
發(fā)表于 2025-3-30 07:55:58 | 只看該作者
Generalizing Semantic Part Detectors Across Domainsrning and DA techniques, and we study their generalization properties to parts from unseen classes when they are learned from a limited number of domains and example images. One of our conclusions is that, for a majority of the domains, part annotations transfer well, and that, performance of the se
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴旗县| 浙江省| 永川市| 铜川市| 会理县| 清丰县| 即墨市| 名山县| 拉孜县| 临桂县| 古田县| 太保市| 晋州市| 龙岩市| 读书| 五家渠市| 西宁市| 新密市| 英吉沙县| 迭部县| 来安县| 岗巴县| 左权县| 建始县| 哈巴河县| 衡阳县| 江孜县| 河间市| 胶州市| 南漳县| 天镇县| 名山县| 阿拉善右旗| 济源市| 达拉特旗| 淮北市| 华坪县| 迁安市| 闽侯县| 安新县| 翼城县|