找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer; 5th MICCAI Workshop, Lisa Koch,M. Jorge Cardoso,Dong Yang Conference proceedings 2024 The Ed

[復制鏈接]
樓主: GOLF
51#
發(fā)表于 2025-3-30 10:44:32 | 只看該作者
,Compositional Representation Learning for?Brain Tumour Segmentation, presence or absence of the tumour (or the tumour sub-regions) in the image are constructed. Then, vMFNet models the encoded image features with von-Mises-Fisher (vMF) distributions, via learnable and compositional vMF kernels which capture information about structures in the images. We show that go
52#
發(fā)表于 2025-3-30 13:45:01 | 只看該作者
,Realistic Data Enrichment for?Robust Image Segmentation in?Histopathology,egmentation of imbalanced objects within images. Therefore, we propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups by conditioning on segmentation maps. Our method can simply expand limited clinical datasets m
53#
發(fā)表于 2025-3-30 18:14:02 | 只看該作者
54#
發(fā)表于 2025-3-30 22:11:32 | 只看該作者
55#
發(fā)表于 2025-3-31 02:48:17 | 只看該作者
56#
發(fā)表于 2025-3-31 08:20:24 | 只看該作者
,SEDA: Self-ensembling ViT with?Defensive Distillation and?Adversarial Training for?Robust Chest X-Refensive distillation for improved robustness against adversaries. Training using adversarial examples leads to better model generalizability and improves its ability to handle perturbations. Distillation using soft probabilities introduces uncertainty and variation into the output probabilities, ma
57#
發(fā)表于 2025-3-31 09:59:28 | 只看該作者
58#
發(fā)表于 2025-3-31 15:45:03 | 只看該作者
,Self-prompting Large Vision Models for?Few-Shot Medical Image Segmentation,s decoder, and leveraging its interactive promptability, we achieve competitive results on multiple datasets (i.e. improvement of more than 15% compared to fine-tuning the mask decoder using a few images). Our code is available at?
59#
發(fā)表于 2025-3-31 19:47:00 | 只看該作者
60#
發(fā)表于 2025-4-1 00:36:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 10:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淮南市| 隆尧县| 水城县| 龙泉市| 威信县| 英山县| 五台县| 惠东县| 齐河县| 清流县| 湖口县| 彩票| 淳安县| 万荣县| 平乐县| 宁波市| 新兴县| 洛川县| 江阴市| 富源县| 河北区| 紫云| 甘孜县| 林口县| 利辛县| 剑河县| 武安市| 天门市| 临夏市| 泗洪县| 宁武县| 天祝| 府谷县| 赞皇县| 陈巴尔虎旗| 长寿区| 日喀则市| 宁波市| 白银市| 卢龙县| 神木县|