找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2023 Workshops; San José, CA, USA, A Mickael Coustaty,Alicia Fornés Conference proceedings 2023 T

[復(fù)制鏈接]
樓主: Insularity
41#
發(fā)表于 2025-3-28 16:52:36 | 只看該作者
42#
發(fā)表于 2025-3-28 21:13:59 | 只看該作者
Paula Kasares,Ane Ortega,Estibaliz Amorrortuition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.
43#
發(fā)表于 2025-3-28 23:57:09 | 只看該作者
44#
發(fā)表于 2025-3-29 04:57:04 | 只看該作者
Karel van Hulle,Leo van der Tasents..The evaluations were carried out on the KABOOM-ONOMATOPOEIA dataset and show the relevance of our method in comparison with methods of the literature, which makes it a promising tool in the field of scene text detection.
45#
發(fā)表于 2025-3-29 09:38:02 | 只看該作者
46#
發(fā)表于 2025-3-29 15:11:03 | 只看該作者
Document Analysis and Recognition – ICDAR 2023 WorkshopsSan José, CA, USA, A
47#
發(fā)表于 2025-3-29 15:52:02 | 只看該作者
Beyond Human Forgeries: An Investigation into?Detecting Diffusion-Generated Handwritingn methods. Our experiments indicate that the strongest discriminative features do not come from generation artifacts, letter shapes, or the generative model’s architecture, but instead originate from real-world artifacts in genuine handwriting that are not reproduced by generative methods.
48#
發(fā)表于 2025-3-29 20:27:46 | 只看該作者
Leveraging Large Language Models for?Topic Classification in?the?Domain of?Public Affairstokens. Our experiments assess the performance of 4 different Spanish LLMs to classify up to 30 different topics in the data in different configurations. The results shows that LLMs can be of great use to process domain-specific documents, such as those in the domain of public affairs.
49#
發(fā)表于 2025-3-30 00:22:57 | 只看該作者
Using GANs for?Domain Adaptive High Resolution Synthetic Document Generationbased) represented a preliminary step towards the generation of realistic document images, it was impeded by its incapacity to produce high-resolution outputs. Our research aims to overcome this restriction, enhancing the DocSynth model’s capacity to generate high-resolution document images. Additio
50#
發(fā)表于 2025-3-30 06:39:17 | 只看該作者
A Survey and?Approach to?Chart Classificationition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太和县| 巢湖市| 楚雄市| 衡山县| 肃宁县| 义马市| 嘉鱼县| 新余市| 托克逊县| 中宁县| 大足县| 滨海县| 平凉市| 淮滨县| 商都县| 遵义县| 沅江市| 关岭| 江安县| 海林市| 当雄县| 仪陇县| 天镇县| 平江县| 于田县| 原阳县| 泸水县| 左权县| 濮阳市| 文昌市| 长治市| 邹城市| 买车| 方山县| 英山县| 平武县| 白河县| 子洲县| 隆尧县| 延吉市| 庆云县|