找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復(fù)制鏈接]
樓主: deteriorate
21#
發(fā)表于 2025-3-25 06:31:05 | 只看該作者
22#
發(fā)表于 2025-3-25 09:53:29 | 只看該作者
Mix-Up Augmentation for Oracle Character Recognition with Imbalanced Data Distributionamework with both the softmax loss and triplet loss on the augmented samples which proves able to improve the classification accuracy further. We conduct extensive evaluations w.r.t. both total class accuracy and average class accuracy on three benchmark datasets (i.e., Oracle-20K, Oracle-AYNU and O
23#
發(fā)表于 2025-3-25 15:15:42 | 只看該作者
https://doi.org/10.1007/978-3-319-89734-9, which is out of scope for other graph-based methods in the literature. We investigate two variants of graph convolutional layers and show that learning improves performances considerably on two popular graph-based word spotting benchmarks.
24#
發(fā)表于 2025-3-25 17:34:51 | 只看該作者
Children in Translocal Familiesgenerating images of promising visual quality, we are able to improve classification performance by augmenting original data with generated samples. Additionally, we demonstrate that our approach is applicable to other domains as well, like digit generation in house number signs.
25#
發(fā)表于 2025-3-25 23:23:14 | 只看該作者
26#
發(fā)表于 2025-3-26 02:19:44 | 只看該作者
Graph Convolutional Neural Networks for Learning Attribute Representations for Word Spotting, which is out of scope for other graph-based methods in the literature. We investigate two variants of graph convolutional layers and show that learning improves performances considerably on two popular graph-based word spotting benchmarks.
27#
發(fā)表于 2025-3-26 07:24:12 | 只看該作者
Context Aware Generation of Cuneiform Signsgenerating images of promising visual quality, we are able to improve classification performance by augmenting original data with generated samples. Additionally, we demonstrate that our approach is applicable to other domains as well, like digit generation in house number signs.
28#
發(fā)表于 2025-3-26 08:56:28 | 只看該作者
Handwritten Text Recognition with Convolutional Prototype Network and Most Aligned Frame Based CTC Tors in decoding. Experiments of handwritten text recognition on four benchmark datasets of different languages show that the proposed method consistently improves the accuracy and alignment of CTC-based text recognition baseline.
29#
發(fā)表于 2025-3-26 16:15:37 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:20 | 只看該作者
M. Kaltenbach,G. Kober,D. Schererin time if more information is needed. Moreover our system is end-to-end trainable, OLT-C3D and the temporal reject system are jointly trained to optimize the earliness of the decision. Our approach achieves superior performances on two complementary and freely available datasets: ILGDB and MTGSetB.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
勃利县| 米脂县| 田林县| SHOW| 东台市| 临桂县| 丰顺县| 肥东县| 临颍县| 阳江市| 鸡泽县| 鸡东县| 辰溪县| 华坪县| 柘荣县| 马山县| 易门县| 孟津县| 房山区| 苍溪县| 太谷县| 岳阳市| 乌兰浩特市| 乾安县| 海兴县| 鹤壁市| 师宗县| 读书| 彭泽县| 木里| 陕西省| 鄂托克前旗| 兴安盟| 龙门县| 奇台县| 永修县| 牡丹江市| 腾冲县| 安宁市| 太保市| 江都市|