找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:39:25 | 只看該作者
SynthTIGER: Synthetic Text Image GEneratoR Towards Better Text Recognition Models the combination of synthetic datasets, MJSynth (MJ) and SynthText (ST). Our ablation study demonstrates the benefits of using sub-components of SynthTIGER and the guideline on generating synthetic text images for STR models. Our implementation is publicly available at ..
42#
發(fā)表于 2025-3-28 19:28:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:17:02 | 只看該作者
44#
發(fā)表于 2025-3-29 04:05:06 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:14 | 只看該作者
46#
發(fā)表于 2025-3-29 14:08:49 | 只看該作者
47#
發(fā)表于 2025-3-29 19:27:55 | 只看該作者
Fast Text vs. Non-text Classification of Imagess, as encountered in social networks, for detection and recognition of scene text. The proposed classifier efficiently removes non-text images from consideration, thus allowing to apply the potentially computationally heavy scene text detection and OCR on only a fraction of the images..The proposed
48#
發(fā)表于 2025-3-29 22:33:33 | 只看該作者
Mask Scene Text Recognizer a supervised learning task of predicting text image mask into a CNN (convolutional neural network)-Transformer framework for scene text recognition. The incorporated mask predicting branch is connected in parallel with the CNN backbone, and the predicted mask is used as attention weights for the fe
49#
發(fā)表于 2025-3-30 03:29:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:04:55 | 只看該作者
Heterogeneous Network Based Semi-supervised Learning for Scene Text?Recognitionbased on abundant labeled data for model training. Obtaining text images is a relatively easy process, but labeling them is quite expensive. To alleviate the dependence on labeled data, semi-supervised learning which combines labeled and unlabeled data seems to be a reasonable solution, and is prove
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高安市| 彭阳县| 榆中县| 嘉鱼县| 双城市| 资兴市| 姜堰市| 富裕县| 雅安市| 安顺市| 错那县| 清涧县| 额敏县| 蒙山县| 靖宇县| 汶上县| 馆陶县| 板桥市| 石泉县| 虞城县| 伊春市| 昌黎县| 安顺市| 高碑店市| 固原市| 闻喜县| 全州县| 探索| 库车县| 浏阳市| 阿勒泰市| 徐闻县| 永济市| 右玉县| 仙桃市| 惠来县| 岐山县| 塔河县| 武穴市| 皋兰县| 红河县|