找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: Carter
11#
發(fā)表于 2025-3-23 09:50:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:08 | 只看該作者
Some Elements about Ordinary Differential Equations,e fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
13#
發(fā)表于 2025-3-23 18:57:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:53 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/282070.jpg
16#
發(fā)表于 2025-3-24 09:02:46 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:03 | 只看該作者
Tipps und Tricks für den Sportmedizinere fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
18#
發(fā)表于 2025-3-24 18:17:37 | 只看該作者
19#
發(fā)表于 2025-3-24 22:41:53 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:13 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1é equation is recalled (Sect. 2.1). We precise how the Painlevé property translates for the first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix. We explain how the first Painlevé equation also arises as a condition of isomonodromic deformations for a linear ODE (Sect
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁波市| 休宁县| 商南县| 资兴市| 崇信县| 鄯善县| 离岛区| 阜平县| 教育| 思茅市| 浪卡子县| 虞城县| 房山区| 清远市| 拜城县| 南溪县| 天镇县| 大渡口区| 芜湖市| 宁强县| 乌海市| 龙陵县| 望奎县| 自治县| 定州市| 旅游| 藁城市| 仙居县| 开平市| 崇仁县| 钟祥市| 吉林省| 灵川县| 施秉县| 玉门市| 盐边县| 陆河县| 海安县| 宜春市| 开阳县| 酒泉市|