找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Sensing and Intelligent Systems; Proceedings of ICDSI Mohamed Elhoseny,Xiaohui Yuan,Salah-ddine Krit Conference proceedings 202

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:47:46 | 只看該作者
https://doi.org/10.1057/9780230253162ed flow aggregation technique allows the user to maximize the number of nodes that could be turned off, in the network, to increase energy saving while meeting QoS provisions. The proposed solution was formulated as an Integer Linear Programming (ILP) problem using a set of energy and QoS constraint
12#
發(fā)表于 2025-3-23 16:33:27 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:29 | 只看該作者
https://doi.org/10.1057/9780230253162ile the ground tests take more time in analyzing data from the field and then send this data to a laptop and use another software for analysis. These steps are costly and doesn’t improve the future and remote sensing of agriculture control. This paper proposes the conception implementation of a dron
14#
發(fā)表于 2025-3-24 01:42:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:06:52 | 只看該作者
https://doi.org/10.1057/9780230270329of deep learning remains insufficient. Recently, some studies are moving towards this side and give remarkable results either for the recognition of alphabets or Arabic numbers. We highlight in this work a deep morphological gradient for the problem of recognition of Arabic manuscript digits. We use
16#
發(fā)表于 2025-3-24 09:49:47 | 只看該作者
https://doi.org/10.1057/9780230270329thors conduct considerable research of a territory using a large number of different database values, which were later used in the studies. They present a practical implementation of indicators value forecasting methods for the socioeconomic development of the territory. They propose information tec
17#
發(fā)表于 2025-3-24 14:01:46 | 只看該作者
https://doi.org/10.1057/9780230270329. The latter have drones equipped with cameras, machine learning (ML) and deep learning (DL) to analyze the data collected by these instruments with greater precision. Deep learning has undergone a vast revolution since the appearance of powerful computers and databases for training and testing, whi
18#
發(fā)表于 2025-3-24 16:28:10 | 只看該作者
https://doi.org/10.1057/9780230270329ation communication technology is working on the building of effective classification/prediction techniques, especially in medical data stream analytics. Online decision tree algorithms can be very helpful in this case. The big challenge for this type of algorithms is that we build a classifier mode
19#
發(fā)表于 2025-3-24 19:03:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:36:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青田县| 台中县| 泸溪县| 平昌县| 钟山县| 海南省| 祥云县| 云南省| 南安市| 曲阳县| 财经| 丽水市| 岳池县| 手机| 北海市| 巫溪县| 凤庆县| 秦安县| 靖远县| 平塘县| 新田县| 河南省| 舞阳县| 旺苍县| 临颍县| 林甸县| 巴南区| 西安市| 上蔡县| 凌源市| 绵阳市| 南京市| 公主岭市| 陇南市| 兰溪市| 浦县| 沅陵县| 通山县| 彭山县| 常德市| 湛江市|