找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Distributed Machine Learning with PySpark; Migrating Effortless Abdelaziz Testas Book 2023 Abdelaziz Testas 2023 Python.Scalable machine le

[復(fù)制鏈接]
樓主: 里程表
41#
發(fā)表于 2025-3-28 17:51:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:38:46 | 只看該作者
methods using PySpark, the industry standard for building scalable ML data pipelines...What You Will Learn..Master the fundamentals of supervised learning, unsupervised learning, NLP, and recommender systems.Un978-1-4842-9750-6978-1-4842-9751-3
43#
發(fā)表于 2025-3-29 00:47:26 | 只看該作者
44#
發(fā)表于 2025-3-29 05:52:16 | 只看該作者
Selecting Algorithms,er, testing and optimizing all of these models in each category would be incredibly cumbersome and require significant computational power. To address this challenge, this chapter introduces k-fold cross-validation, a technique that helps select the best-performing model from a range of different al
45#
發(fā)表于 2025-3-29 09:45:12 | 只看該作者
Multiple Linear Regression with Pandas, Scikit-Learn, and PySpark,e steps involved in machine learning, including splitting data, model training, model evaluation, and prediction, are the same in both frameworks. Furthermore, Pandas and PySpark have similar approaches to data manipulation, which simplifies tasks like exploring data.
46#
發(fā)表于 2025-3-29 11:56:45 | 只看該作者
Decision Tree Regression with Pandas, Scikit-Learn, and PySpark,ion model using the decision tree algorithm—an alternative to the multiple linear regression model we used in the previous chapter. We will use both Scikit-Learn and PySpark to train and evaluate the model and then use it to predict the sale price of houses based on several features such as the size
47#
發(fā)表于 2025-3-29 19:25:53 | 只看該作者
48#
發(fā)表于 2025-3-29 19:48:02 | 只看該作者
Decision Tree Classification with Pandas, Scikit-Learn, and PySpark,ee classification model for predicting the species of an Iris flower based on its feature measurements. We will leverage the well-known Iris dataset, which consists of measurements of four features (sepal length, sepal width, petal length, and petal width) from three distinct species of Iris flowers
49#
發(fā)表于 2025-3-30 01:32:19 | 只看該作者
50#
發(fā)表于 2025-3-30 07:35:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家口市| 怀化市| 伊宁市| 界首市| 海安县| 怀柔区| 平安县| 石阡县| 崇明县| 兴城市| 深水埗区| 朝阳市| 荔波县| 绥棱县| 朔州市| 孙吴县| 保亭| 卢湾区| 奉节县| 吉水县| 洛浦县| 昌乐县| 乡宁县| 新乡县| 邹城市| 巩义市| 阿坝县| 华宁县| 金乡县| 喀喇| 德保县| 蒲江县| 乌兰浩特市| 永胜县| 上思县| 迭部县| 静安区| 武平县| 垣曲县| 新和县| 鹿邑县|