找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dissipative Solitons; Nail Akhmediev,Adrian Ankiewicz Book 2005 Springer-Verlag Berlin Heidelberg 2005 Absorption.Dissipative systems.Lase

[復制鏈接]
樓主: 銀河
41#
發(fā)表于 2025-3-28 15:21:00 | 只看該作者
42#
發(fā)表于 2025-3-28 20:58:16 | 只看該作者
43#
發(fā)表于 2025-3-29 00:40:38 | 只看該作者
44#
發(fā)表于 2025-3-29 05:16:05 | 只看該作者
45#
發(fā)表于 2025-3-29 08:13:50 | 只看該作者
46#
發(fā)表于 2025-3-29 14:07:41 | 只看該作者
https://doi.org/10.1007/978-94-015-9421-9linear coupling in conjunction with the cubic Kerr nonlinearity and chromatic dispersion leads to the formation of attracting soliton states, i.e. dissipative solitons. A review of each model is given with an evaluation of its merit and mode-locking features.
47#
發(fā)表于 2025-3-29 18:28:58 | 只看該作者
https://doi.org/10.1007/978-94-015-9676-3systems. In many cases, it is advantageous to interpret the overall pattern under consideration in terms of a superposition of certain spatially well-localized elementary patterns that we may refer to as “particles”. In the simplest case, all these particles are of the same kind and the complex beha
48#
發(fā)表于 2025-3-29 21:05:15 | 只看該作者
The Convergence of Scientific Knowledgecomplex discrete diffraction, as well as Bloch oscillations, arising from the linear properties of such systems. Subsequently, using a generic cubic-quintic nonlinearity, we identify self-localized dissipative discrete soliton solutions, and study their characteristics.
49#
發(fā)表于 2025-3-30 02:43:52 | 只看該作者
50#
發(fā)表于 2025-3-30 07:15:43 | 只看該作者
The Convergence of Scientific Knowledgeoblem closer to the experimental situation. Dissipation can play either a principal role, i.e. determining the phenomenon itself (so that the latter disappears when dissipation is switched off), or a secondary role, i.e. affecting physical processes only by causing relatively small energy losses (so
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南投市| 全南县| 蛟河市| 葵青区| 吉林省| 江都市| 长寿区| 陵川县| 滕州市| 盘山县| 邻水| 云梦县| 曲周县| 大英县| 突泉县| 淮阳县| 麦盖提县| 邹城市| 南川市| 泰来县| 兰考县| 鹤峰县| 巧家县| 盘锦市| 周至县| 龙江县| 霍州市| 清原| 施甸县| 正宁县| 双柏县| 榆中县| 涞源县| 乌拉特前旗| 仁化县| 布尔津县| 南皮县| 楚雄市| 武安市| 班戈县| 三穗县|