找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning for Speech Recognition; Theory and Practice Xiaodong He,Li Deng Book 2008 Springer Nature Switzerland AG 2008

[復(fù)制鏈接]
樓主: Tamoxifen
21#
發(fā)表于 2025-3-25 06:14:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:13:04 | 只看該作者
Discriminative Learning: A Unified objective Function,HMMs). These are: maximum mutual information (MMI), minimum classification error (MCE), and minimum phone error/minimum word error (MPE/MWE). We also compare our unified form of these objective functions with another popular unified form in the literature.
23#
發(fā)表于 2025-3-25 14:39:03 | 只看該作者
Discriminative Learning Algorithm for Exponential-Family Distributions,design where each class is characterized by an exponential-family distribution discussed in Chapter 1. The next chapter extends the results here into the more difficult but practically more useful case of hidden Markov models (HMMs).
24#
發(fā)表于 2025-3-25 17:03:56 | 只看該作者
25#
發(fā)表于 2025-3-25 20:18:27 | 只看該作者
26#
發(fā)表于 2025-3-26 03:17:26 | 只看該作者
1932-121X ech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (M
27#
發(fā)表于 2025-3-26 04:26:13 | 只看該作者
CSR, Sustainability, Ethics & Governancey, real-world speech recognition tasks such as commercial telephony large-vocabulary ASR (LV-ASR) applications. We show that the GT-based discriminative training gives superior performance over the conventional maximum likelihood (ML)-based training method.
28#
發(fā)表于 2025-3-26 12:03:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:59:19 | 只看該作者
Book 2008ition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minim
30#
發(fā)表于 2025-3-26 18:39:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 22:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三明市| 靖远县| 英德市| 屏东市| 泰宁县| 福贡县| 利川市| 罗城| 武宁县| 鄂温| 镇雄县| 静安区| 福贡县| 定边县| 安国市| 德钦县| 嫩江县| 绍兴市| 将乐县| 米林县| 铜鼓县| 砚山县| 盐城市| 小金县| 高碑店市| 年辖:市辖区| 穆棱市| 龙陵县| 浦北县| 长顺县| 南开区| 鄂伦春自治旗| 海安县| 宜城市| 新龙县| 桃园市| 定远县| 南阳市| 象州县| 米脂县| 安多县|