找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminants, Resultants, and Multidimensional Determinants; Israel M. Gelfand,Mikhail M. Kapranov,Andrei V. Ze Book 1994 Springer Scienc

[復(fù)制鏈接]
樓主: 頌歌
41#
發(fā)表于 2025-3-28 15:12:45 | 只看該作者
42#
發(fā)表于 2025-3-28 21:45:21 | 只看該作者
43#
發(fā)表于 2025-3-29 01:15:36 | 只看該作者
Associated Varieties and General Resultants vector subspaces in C. correspond to projective subspaces in .., we see that .(.) parametrizes (.?1)-dimensional projective subspaces in ... In a more invariant fashion, we can start from any finite-dimensional vector space . and construct the Grassmannian .(.) of .dimensional vector subspaces in ..
44#
發(fā)表于 2025-3-29 06:59:24 | 只看該作者
Triangulations and Secondary Polytopesertain class of polytopes, called ., whose vertices correspond to certain triangulations of a given convex polytope. These polytopes will play a crucial role later in the study of the Newton polytopes of discriminants and resultants. The constructions in this chapter are quite elementary.
45#
發(fā)表于 2025-3-29 10:29:03 | 只看該作者
https://doi.org/10.1007/978-0-8176-4771-1algebra; algebraic geometry; elimination theory; geometry; hyperdeterminants; mathematics; polytopes; resul
46#
發(fā)表于 2025-3-29 12:20:33 | 只看該作者
47#
發(fā)表于 2025-3-29 15:58:42 | 只看該作者
Israel M. Gelfand,Mikhail M. Kapranov,Andrei V. ZeThe definitive text on eliminator theory.Revives the classical theory of resultants and discriminants.Presents both old and new results of the theory
48#
發(fā)表于 2025-3-29 22:35:33 | 只看該作者
Modern Birkh?user Classicshttp://image.papertrans.cn/e/image/281221.jpg
49#
發(fā)表于 2025-3-30 03:13:44 | 只看該作者
Discriminants, Resultants, and Multidimensional Determinants
50#
發(fā)表于 2025-3-30 04:07:34 | 只看該作者
Projective Dual Varieties and General Discriminants∈ C, which are not all equal to 0 and are regarded modulo simultaneous multiplication by a non-zero number. More generally, if . is a finite-dimensional complex vector space, then we denote by .(.) the projectivization of ., i.e., the set of 1-dimensional vector subspaces in .. Thus .. = .(C.).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 22:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西吉县| 收藏| 秭归县| 常山县| 基隆市| 定襄县| 容城县| 甘泉县| 长丰县| 本溪市| 凯里市| 桐乡市| 屯留县| 黄梅县| 永年县| 光山县| 伊金霍洛旗| 澄城县| 大姚县| 寻乌县| 临潭县| 阿鲁科尔沁旗| 达日县| 沁阳市| 科技| 达拉特旗| 两当县| 万荣县| 舞钢市| 板桥市| 泰州市| 岳阳县| 光泽县| 汝城县| 南部县| 临安市| 清丰县| 兖州市| 南溪县| 府谷县| 榆中县|