找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete–Time Stochastic Control and Dynamic Potential Games; The Euler–Equation A David González-Sánchez,Onésimo Hernández-Lerma Book 2013

[復(fù)制鏈接]
樓主: 討論小組
11#
發(fā)表于 2025-3-23 10:02:03 | 只看該作者
Irrigated Agriculture at the Crossroadsution to a system of stochastic difference equations to be the solution of a certain OCP. Our results extend to the stochastic case the work of Dechert [21]. In particular, we present a stochastic version of an important principle in welfare economics. The presentation of this chapter is based on Go
12#
發(fā)表于 2025-3-23 17:19:44 | 只看該作者
Irrigated Agriculture at the Crossroadsblems (OCPs), to find Nash equilibria in dynamic games. Second, to identify classes of dynamic potential games (DPGs), that is, games with Nash equilibria that can be found by solving a single OCP. In particular, the stochastic lake game (SLG) of Example 1.2 is included in one of these classes.
13#
發(fā)表于 2025-3-23 21:10:41 | 只看該作者
L. S. Pereira,R. A. Feddes,B. LesaffreBoth direct and inverse problems in optimal control were considered in Chaps. 2 and 3, respectively. In Chap. 4 we dealt with dynamic games. Some of our main results are mentioned below in addition to discussing their relevance and possible generalizations.
14#
發(fā)表于 2025-3-23 23:00:25 | 只看該作者
15#
發(fā)表于 2025-3-24 05:28:55 | 只看該作者
16#
發(fā)表于 2025-3-24 10:23:02 | 只看該作者
David González-Sánchez,Onésimo Hernández-LermaPresents a systematic, comprehensive, self-contained analysis of dynamic potential games, which appears for the first time in book form?.Reader-friendly, at a graduate student level.Substantial number
17#
發(fā)表于 2025-3-24 13:17:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:02:27 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:37 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:33 | 只看該作者
Irrigated Agriculture at the Crossroadsblems (OCPs), to find Nash equilibria in dynamic games. Second, to identify classes of dynamic potential games (DPGs), that is, games with Nash equilibria that can be found by solving a single OCP. In particular, the stochastic lake game (SLG) of Example 1.2 is included in one of these classes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿州市| 慈溪市| 清镇市| 霍城县| 沙坪坝区| 望江县| 桂阳县| 昌吉市| 鄂州市| 敦化市| 鹤壁市| 集安市| 五莲县| 巩留县| 彰武县| 项城市| 丹凤县| 桂阳县| 会理县| 鄂伦春自治旗| 怀来县| 宜城市| 德保县| 博客| 宁晋县| 玉环县| 大余县| 崇仁县| 鹤壁市| 西平县| 绥宁县| 榕江县| 行唐县| 永平县| 广河县| 莫力| 瑞丽市| 吉首市| 阿勒泰市| 贵州省| 清涧县|