找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Semi-Markov Random Evolutions and Their Applications; Nikolaos Limnios,Anatoliy Swishchuk Book 2023 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: sulfonylureas
21#
發(fā)表于 2025-3-25 03:39:36 | 只看該作者
A Brief Survey of the Literature,s well as the detailed proofs of the theorems. Applications of these results, for additive functionals of SMC, geometric Markov renewal processes, dynamical systems, or difference equations, etc., are given.
22#
發(fā)表于 2025-3-25 09:19:46 | 只看該作者
Sustainability and Optimality of Public Debttic split, partition in subsets of the state space, merging scheme, and aggregation of many states to one state, where it is much simpler to study. The stochastic systems introduced in chapter 3 are studied as an application of the above theory.
23#
發(fā)表于 2025-3-25 14:17:25 | 只看該作者
24#
發(fā)表于 2025-3-25 19:29:00 | 只看該作者
Sustainability and Optimality of Public Debtm, the stochastic SARS model. The model here, for a multistate epidemiological system, is based on difference equations. The merging problem is also considered here, and the averaging and diffusion approximation results of the stochastic SARS model are given.
25#
發(fā)表于 2025-3-25 20:50:13 | 只看該作者
Discrete-Time Semi-Markov Random Evolutions,mes, and tightness of probability measures. The stochastic systems that are considered in the sequel are also presented and formulated in terms of random evolution as additive functionals, geometric Markov renewal chains, and dynamical systems. The general series scheme is presented.
26#
發(fā)表于 2025-3-26 02:11:27 | 只看該作者
27#
發(fā)表于 2025-3-26 07:41:04 | 只看該作者
DTSMRE in Reduced Random Media,tic split, partition in subsets of the state space, merging scheme, and aggregation of many states to one state, where it is much simpler to study. The stochastic systems introduced in chapter 3 are studied as an application of the above theory.
28#
發(fā)表于 2025-3-26 11:02:58 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:07:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁城县| 建阳市| 浦江县| 特克斯县| 望奎县| 鹤山市| 新宾| 巴青县| 南汇区| 鄂伦春自治旗| 砚山县| 安多县| 万荣县| 个旧市| 罗甸县| 增城市| 芮城县| 乌兰察布市| 石家庄市| 木里| 得荣县| 东台市| 怀安县| 台湾省| 鱼台县| 辉南县| 彭阳县| 资溪县| 林西县| 蛟河市| 郧西县| 陕西省| 翁牛特旗| 南川市| 焦作市| 酉阳| 东乌珠穆沁旗| 高陵县| 扶风县| 西吉县| 博客|