找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time Markov Control Processes; Basic Optimality Cri Onésimo Hernández-Lerma,Jean Bernard Lasserre Book 1996 Springer Science+Busin

[復制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 03:27:39 | 只看該作者
Infinite-Horizon Discounted-Cost Problems,inite-horizon problems, but for many purposes it is convenient to introduce the fiction that the optimization horizon is infinite. Certainly, for instance, processes of capital accumulation for an economy, or some problems on inventory or portfolio management, do not necessarily have a natural stopp
22#
發(fā)表于 2025-3-25 08:00:33 | 只看該作者
The Linear Programming Formulation, principle applicable to almost any class of OCPs, deterministic or stochastic, in discrete or continuous time, constrained or unconstrained, with finite or infinite optimization horizon—some references are given in §6.6. The preferred techniques, on the other hand, include the Lagrange multipliers
23#
發(fā)表于 2025-3-25 12:55:47 | 只看該作者
0172-4568 y of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, cont
24#
發(fā)表于 2025-3-25 16:16:38 | 只看該作者
25#
發(fā)表于 2025-3-25 22:28:55 | 只看該作者
https://doi.org/10.1007/978-981-15-3473-7ite or infinite optimization horizon—some references are given in §6.6. The preferred techniques, on the other hand, include the Lagrange multipliers method and convex and linear programming techniques.
26#
發(fā)表于 2025-3-26 02:32:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:35:59 | 只看該作者
The Linear Programming Formulation,ite or infinite optimization horizon—some references are given in §6.6. The preferred techniques, on the other hand, include the Lagrange multipliers method and convex and linear programming techniques.
28#
發(fā)表于 2025-3-26 12:14:00 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:05 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 18:30:39 | 只看該作者
9樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
区。| 嘉善县| 长兴县| 行唐县| 壶关县| 德安县| 庆城县| 阳谷县| 吉林省| 哈巴河县| 盱眙县| 迁西县| 澄江县| 车险| 正定县| 麻江县| 潜江市| 抚远县| 晋江市| 岫岩| 秭归县| 东丽区| 海南省| 大安市| 毕节市| 淮北市| 汶川县| 宁晋县| 左贡县| 和政县| 洪湖市| 礼泉县| 南开区| 深泽县| 佳木斯市| 兰州市| 集贤县| 虞城县| 亚东县| 武邑县| 襄汾县|