找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete-Time High Order Neural Control; Trained with Kalman Edgar N. Sanchez,Alma Y. Alanís,Alexander G. Louki Book 2008 Springer-Verlag

[復制鏈接]
樓主: 揭發(fā)
31#
發(fā)表于 2025-3-26 21:44:23 | 只看該作者
Discrete-Time Block Control,on of the dynamic system is named as the model. Basically there are two ways to obtain a model; it can be derived in a deductive manner using physics laws, or it can be inferred from a set of data collected during a practical experiment. The first method can be simple, but in many cases it is excess
32#
發(fā)表于 2025-3-27 04:50:57 | 只看該作者
33#
發(fā)表于 2025-3-27 06:34:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:04:10 | 只看該作者
Discrete-Time Block Control, chapter, a recurrent high order neural network is first used to identify the plant model, then based on this neural model, a discrete-time control law, which combines discrete-time block control and sliding modes techniques, is derived. The chapter also includes the respective stability analysis fo
35#
發(fā)表于 2025-3-27 16:17:41 | 只看該作者
Discrete-Time Neural Observers,e observer is based on a recurrent high order neural network (RHONN), which estimates the state vector of the unknown plant dynamics and it has a Luenberger structure. The learning algorithm for the RHONN is implemented using an extended Kaiman filter (EKF). The respective stability analysis, on the
36#
發(fā)表于 2025-3-27 19:25:32 | 只看該作者
Discrete-Time Output Trajectory Tracking,RHONO. This observer is based on a discrete-time recurrent high-order neural network (RHONN), which estimates the state of the unknown plant dynamics. The learning algorithm for the RHONN is based on an EKF. Once the neural network structure is determined, the backstepping and the block control tech
37#
發(fā)表于 2025-3-28 01:21:09 | 只看該作者
38#
發(fā)表于 2025-3-28 04:33:21 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 06:44:44 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 14:27:12 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
根河市| 襄樊市| 枣庄市| 阿尔山市| 偏关县| 外汇| 伊春市| 固安县| 扎兰屯市| 建平县| 台北县| 辽宁省| 望奎县| 金山区| 文水县| 曲水县| 靖远县| 枣阳市| 专栏| 江都市| 石门县| 宁夏| 姜堰市| 博野县| 宜都市| 中西区| 潜山县| 南江县| 新晃| 禄劝| 沈阳市| 静乐县| 青浦区| 新建县| 莱阳市| 吴川市| 绥江县| 碌曲县| 故城县| 陵水| 芜湖市|