找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry, Graphs, and Games; 21st Japanese Confer Jin Akiyama,Reginaldo M. Marcelo,Yushi Uno Conference proceedi

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:34:21 | 只看該作者
https://doi.org/10.1007/978-1-4615-0603-4 of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
12#
發(fā)表于 2025-3-23 15:03:28 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:51 | 只看該作者
Robustness in Power-Law Kinetic Systems with Reactant-Determined Interactions, of reactions with the same reactant complex are identical. As illustration, we considered a scenario in the pre-industrial state of global carbon cycle. A power-law approximation of the dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing PL-RDK system.
14#
發(fā)表于 2025-3-24 02:13:33 | 只看該作者
0302-9743 etry and Graphs, JCDCGGG 2018, held in Quezon City, Philippines, in September 2018.. The total of 14 papers included in this volume was carefully reviewed and selected from 25 submissions. The papers feature advances made in the field of computational geometry and focus on emerging technologies, new
15#
發(fā)表于 2025-3-24 04:28:35 | 只看該作者
16#
發(fā)表于 2025-3-24 10:32:55 | 只看該作者
https://doi.org/10.1007/978-3-642-21308-3ni and Rappaport [JCDCG 2017] gave an algorithm for determining whether a ball-capturing beacon strategy exists, while conjecturing that such a strategy always exists. We disprove this conjecture by constructing orthogonal and general-position polygons in which the ball and the beacon can never be united.
17#
發(fā)表于 2025-3-24 13:08:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:47:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西贡区| 长春市| 株洲县| 永新县| 新泰市| 定兴县| 榆社县| 鄄城县| 苏尼特左旗| 石城县| 揭西县| 岗巴县| 北宁市| 库车县| 文登市| 博白县| 涡阳县| 彩票| 射洪县| 石台县| 定西市| 莱芜市| 白河县| 山东| 汝州市| 曲麻莱县| 六枝特区| 邯郸市| 竹山县| 南郑县| 综艺| 大田县| 平利县| 井陉县| 桂东县| 景泰县| 北宁市| 建宁县| 云梦县| 商水县| 宁城县|