找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2000 Springer-Verla

[復(fù)制鏈接]
樓主: 帳簿
41#
發(fā)表于 2025-3-28 17:18:47 | 只看該作者
https://doi.org/10.1007/978-1-4419-0861-2f cuts. The folds are based on the straight skeleton, which lines up the desired edges by folding along various bisectors; and a collection of perpendiculars that make the crease pattern foldable. We prove that the crease pattern is flat foldable by demonstrating a family of folded states with the d
42#
發(fā)表于 2025-3-28 21:03:58 | 只看該作者
https://doi.org/10.1007/978-1-4419-0861-2d for discrete data using Voronoi diagrams. Recently, Gross and Farin extended Sibson’s interpolant to continuous data distributed over polygons and circles. On the other hand, the authors recently found another interpolation method for discrete data. This paper outlines the authors’ interpolation m
43#
發(fā)表于 2025-3-29 00:48:38 | 只看該作者
44#
發(fā)表于 2025-3-29 04:33:47 | 只看該作者
45#
發(fā)表于 2025-3-29 08:00:27 | 只看該作者
https://doi.org/10.1007/978-1-4419-0861-2.) is a set of (possibly crossing) straight-line segments whose endpoints belang to .(.). If a geometric graph . is a complete bipartite graph with partite sets . and ., i.e., .(.) = . ∪ ., then . is denoted by .(., .). Let . and . be two disjoint sets of points in the plane such that |.| = |.| and
46#
發(fā)表于 2025-3-29 15:02:14 | 只看該作者
47#
發(fā)表于 2025-3-29 19:02:28 | 只看該作者
https://doi.org/10.1007/978-1-4419-0861-2 of an .-cycle and an .-cycle that form a non-splittable link, with no two balls overlapping. It is proved that (1) a (3,.)-link exists only when . ≥ 6, and in any (3,6)-link, each ball in the 3-cycle is tangent to all balls in the 6-cycle, (2) a (4,4)-cycle exists and in any (4,4)-cycle, each ball
48#
發(fā)表于 2025-3-29 20:44:00 | 只看該作者
https://doi.org/10.1007/978-1-4419-0861-2nit disk graphs. When the given unit disk graph is defined on a slab whose width is ., we propose an algorithm for finding a maximum independent set in . time where . denotes the number of vertices. We also propose a (1 – 1/r)-approximation algorithm for the maximum independent set problems on a (ge
49#
發(fā)表于 2025-3-30 00:52:46 | 只看該作者
50#
發(fā)表于 2025-3-30 05:19:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德令哈市| 翁源县| 南乐县| 静海县| 斗六市| 高淳县| 万全县| 绍兴市| 惠来县| 新田县| 商城县| 明星| 新乡市| 长宁区| 通渭县| 张家界市| 桦南县| 临夏县| 通渭县| 香格里拉县| 古蔺县| 府谷县| 津南区| 鄯善县| 阜新市| 临沧市| 米脂县| 云南省| 开远市| 改则县| 突泉县| 逊克县| 新乡县| 安吉县| 莫力| 三江| 宜兰市| 凤阳县| 蒙阴县| 九台市| 留坝县|