找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 乳缽
11#
發(fā)表于 2025-3-23 13:34:23 | 只看該作者
12#
發(fā)表于 2025-3-23 17:51:12 | 只看該作者
,Piano-Hinged Dissections: Now Let’s Fold!, used to rotate a piece . from being next to a piece . on one level to being above or below piece . on another level. Techniques are presented and analyzed for designing piano-hinged dissections. These include the use of polygon structure, the conversion from twisted-hinged dissections, the folding
13#
發(fā)表于 2025-3-23 18:33:15 | 只看該作者
Comparing Hypergraphs by Areas of Hyperedges Drawn on a Convex Polygon,-gon . in the plane with vertices . ., . ., ..., . . which are arranged in this order clockwisely, we let each node .?∈?. correspond to the vertex . . and define the area . .(.) of . on . by the sum of weighted areas of convex hulls for all hyperedges in .. For 0 ≤ .<.<. ≤ .-1, a convex three-cut .(
14#
發(fā)表于 2025-3-24 01:33:53 | 只看該作者
15#
發(fā)表于 2025-3-24 05:45:08 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:37:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:29 | 只看該作者
Non-Neoplastic Intestinal Disease However, not much is known about the separation problem for these inequalities. Previously Avis and Grishukhin showed that certain special cases of the separation problem for hypermetric inequalities are NP-hard, as evidence that the separation problem is itself hard. In this paper we show that sim
19#
發(fā)表于 2025-3-24 22:18:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:48 | 只看該作者
Non-Neoplastic Intestinal Diseaseector contains 1/3 of each mass). We prove the existence of a continuum of equitable 3-cuttings that satisfy some closure property. This permits us to generalize earlier results on both convex and non-convex equitable 3-cuttings with additional constraints.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯昌县| 丰城市| 亳州市| 左云县| 宁安市| 赫章县| 沂水县| 通辽市| 白沙| 苏尼特左旗| 崇明县| 买车| 阜阳市| 耿马| 竹山县| 平山县| 新乡县| 孟村| 二连浩特市| 浮梁县| 革吉县| 五常市| 蒙阴县| 清远市| 家居| 和静县| 东宁县| 响水县| 泗水县| 定结县| 广平县| 克什克腾旗| 清远市| 神农架林区| 东源县| 文安县| 夏邑县| 乌兰县| 桃江县| 榆林市| 仁寿县|