找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 19th IAPR Internatio Nicolas Normand,Jeanpierre Guédon,Florent Autrusse Conference proceedings 2016

[復制鏈接]
31#
發(fā)表于 2025-3-27 00:21:34 | 只看該作者
A Comparison of Some Methods for Direct 2D Reconstruction from Discrete Projected Viewsnverse for such transforms. We assemble a limited set of measurements and then apply the inversion to obtain a high-fidelity image of the original object. In this work, we compare the following direct inversion techniques for sets of discrete projections: Radon-i(inverse)Radon, a least squared error
32#
發(fā)表于 2025-3-27 01:15:46 | 只看該作者
33#
發(fā)表于 2025-3-27 06:59:40 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:30 | 只看該作者
Shape Classification According to LBP Persistence of Critical Pointseleton are determined first. The shape is described according to persistence of the local topology at these critical points over a range of scales. The local topology over scale-space is derived using the local binary pattern texture operator with varying radii. To visualise the descriptor, a new ty
35#
發(fā)表于 2025-3-27 17:20:20 | 只看該作者
36#
發(fā)表于 2025-3-27 19:18:37 | 只看該作者
37#
發(fā)表于 2025-3-28 00:06:54 | 只看該作者
Nicolas Normand,Jeanpierre Guédon,Florent Autrusse
38#
發(fā)表于 2025-3-28 02:56:07 | 只看該作者
A Tomographical Interpretation of a Sufficient Condition on ,-Graphical Sequencesoblem under a tomographical perspective by adapting an already known reconstruction algorithm that has been defined for regular .-uniform degree sequences to the proposed instances, providing efficiency to the sufficient condition. Furthermore, we extend the set of .-uniform degree sequences whose g
39#
發(fā)表于 2025-3-28 10:20:25 | 只看該作者
40#
發(fā)表于 2025-3-28 13:36:33 | 只看該作者
Conference proceedings 2016Nantes,France, in April 2016.?.The 32 revised full papers presented together with 2invited talks were carefully selected from 51 submissions. The papers areorganized in topical sections on combinatorial tools; discretization; discretetomography; discrete and combinatorial topology; shape descriptors
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
松原市| 蕉岭县| 乌兰浩特市| 丽水市| 林州市| 林口县| 喀喇沁旗| 嘉定区| 时尚| 台南市| 耿马| 府谷县| 厦门市| 城市| 大安市| 平原县| 宜良县| 开鲁县| 长春市| 屯门区| 沐川县| 大港区| 阆中市| 灵山县| 精河县| 宿州市| 临汾市| 太康县| 腾冲县| 黄大仙区| 甘孜| 长葛市| 象州县| 潼南县| 九龙县| 兰州市| 卢龙县| 乌审旗| 德令哈市| 宜春市| 平乐县|