找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry for Computer Imagery; 21st IAPR Internatio Michel Couprie,Jean Cousty,Nabil Mustafa Conference proceedings 2019 Springer

[復(fù)制鏈接]
樓主: 變成小松鼠
51#
發(fā)表于 2025-3-30 08:12:03 | 只看該作者
52#
發(fā)表于 2025-3-30 13:35:58 | 只看該作者
A New Entropy for HypergraphsThis paper introduces a new definition of entropy for hypergraphs. It takes into account the fine structure of a hypergraph by considering its partial hypergraphs, leading to an entropy vector. This allows for more precision in the description of the underlying complexity of the hypergraph. Properties of the proposed definitions are analyzed.
53#
發(fā)表于 2025-3-30 17:52:45 | 只看該作者
54#
發(fā)表于 2025-3-30 22:41:27 | 只看該作者
Nikolai Zamarashkin,Dmitry Zheltkov an arbitrary Euclidean point and a straight line passing through this point. The reflection line is digitized and the 2D space is paved by digital perpendicular (to the reflection line) straight lines. For each perpendicular line, integer points are reflected by central symmetry with respect to the
55#
發(fā)表于 2025-3-31 02:02:04 | 只看該作者
56#
發(fā)表于 2025-3-31 05:04:19 | 只看該作者
57#
發(fā)表于 2025-3-31 11:18:31 | 只看該作者
58#
發(fā)表于 2025-3-31 14:17:28 | 只看該作者
S. Ivvan Valdez,Felipe Trujillo-Romero rely on smoothness hypotheses that are not verified by the curves including angular points. The notion of . introduced by Milnor in the article . generalizes the notion of integral curvature to continuous curves. Thanks to the turn, we are able to define the .. This promising property of curves do
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乳源| 十堰市| 宿迁市| 阳谷县| 洮南市| 扎兰屯市| 石景山区| 静乐县| 沐川县| 鄂温| 辉县市| 酒泉市| 湖州市| 昌平区| 三门县| 灌阳县| 德庆县| 保康县| 岳阳市| 三门峡市| 衡水市| 平安县| 黄陵县| 天峻县| 瓮安县| 平和县| 海门市| 西乡县| 耒阳市| 盱眙县| 泾源县| 防城港市| 蓬溪县| 宁都县| 襄汾县| 城口县| 增城市| 长治市| 富民县| 建昌县| 军事|