找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Mathematical Morphology; Third International Sara Brunetti,Andrea Frosini,Simone Rinaldi Conference proceedings 2024

[復(fù)制鏈接]
樓主: whiplash
51#
發(fā)表于 2025-3-30 09:30:01 | 只看該作者
Chapter 7: Ajahn Chah Gives a Teachingd rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective, our 3D digitized rotation inherits the same property. Experiments show that the average error of our digitized rotation compared to the continuous one is kept under 1 (around 0.8).
52#
發(fā)表于 2025-3-30 13:57:35 | 只看該作者
53#
發(fā)表于 2025-3-30 18:24:18 | 只看該作者
Bijectivity Analysis of?Finite Rotations on?,: A?Hierarchical Approach hinge angles) and the size of the considered ball. We propose efficient algorithmic schemes leading to the construction of combinatorial models (trees) of the bijective finite rotations. These algorithms and structures open the way to a better understanding of the notion of bijectivity with respect to finite vs. infinite discrete rotations.
54#
發(fā)表于 2025-3-30 21:14:29 | 只看該作者
Bijective Digitized 3D Rotation Based on?Beam Shearsd rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective, our 3D digitized rotation inherits the same property. Experiments show that the average error of our digitized rotation compared to the continuous one is kept under 1 (around 0.8).
55#
發(fā)表于 2025-3-31 01:50:16 | 只看該作者
56#
發(fā)表于 2025-3-31 05:46:01 | 只看該作者
57#
發(fā)表于 2025-3-31 12:32:06 | 只看該作者
58#
發(fā)表于 2025-3-31 15:41:50 | 只看該作者
https://doi.org/10.1007/978-3-642-73875-3which guarantees the equality if the musical pattern satisfies a topological condition. This condition is met when the patterns do not intersect, or only slightly, which is coherent in a musical context. Due to the importance of repetition in music, this idea proves to be relevant for the musical pattern discovery task.
59#
發(fā)表于 2025-3-31 18:20:12 | 只看該作者
Plato killed a moth in my dream by the branch of the Stern-Brocot tree. This generalisation shows the close link between arithmetic hyperplanes and the generalised Stern-Brocot tree and opens up interesting perspectives for the recognition of pieces of arithmetic hyperplanes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦皇岛市| 都兰县| 桂阳县| 海南省| 龙川县| 闻喜县| 屯门区| 永昌县| 泸定县| 商都县| 水富县| 阿拉善左旗| 光泽县| 伊金霍洛旗| 满洲里市| 新疆| 萍乡市| 麻阳| 徐州市| 和平区| 茌平县| 策勒县| 固始县| 安塞县| 抚松县| 东方市| 平果县| 高台县| 汤原县| 会理县| 玛多县| 抚远县| 泗洪县| 望奎县| 建湖县| 金溪县| 武冈市| 喜德县| 夏邑县| 胶州市| 鸡东县|