找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Diversity and Dispersion Maximization; A Tutorial on Metahe Rafael Martí,Anna Martínez-Gavara Book 2023 The Editor(s) (if applicab

[復制鏈接]
樓主: grateful
41#
發(fā)表于 2025-3-28 15:01:34 | 只看該作者
Discrete Diversity and Dispersion Maximization978-3-031-38310-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
42#
發(fā)表于 2025-3-28 20:12:36 | 只看該作者
The Barents Euro-Arctic Councilally represent the optimal solutions of some diversity models when solving Euclidean instances. These representations help us to understand and differentiate the models and their area of applicability. In particular, we disclose which models are better suited for dispersion and which ones for representativeness.
43#
發(fā)表于 2025-3-28 23:03:43 | 只看該作者
44#
發(fā)表于 2025-3-29 04:32:18 | 只看該作者
1931-6828 as supplementary to a primary text in upper undergraduate courses..The chapters are divided into three main sections. The first section describes a metaheuristic methodology in a tutorial style, offering gener978-3-031-38312-0978-3-031-38310-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
45#
發(fā)表于 2025-3-29 11:19:29 | 只看該作者
46#
發(fā)表于 2025-3-29 14:32:01 | 只看該作者
47#
發(fā)表于 2025-3-29 19:07:59 | 只看該作者
https://doi.org/10.1007/978-1-349-14650-5easibility or local optimality, which were usually treated as barriers. The methods based on these principles constitute nowadays the area called adaptive memory programming. Over a wide range of problem settings, the strategic use of memory in these methods has proved to make dramatic differences i
48#
發(fā)表于 2025-3-29 19:47:58 | 只看該作者
Book 2023resented in each chapter, this book may be used in a master course, a doctoral seminar, or as supplementary to a primary text in upper undergraduate courses..The chapters are divided into three main sections. The first section describes a metaheuristic methodology in a tutorial style, offering gener
49#
發(fā)表于 2025-3-30 02:20:29 | 只看該作者
50#
發(fā)表于 2025-3-30 06:54:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广昌县| 西昌市| 大竹县| 进贤县| 博爱县| 新巴尔虎右旗| 桐梓县| 深泽县| 罗城| 广灵县| 华池县| 九江县| 阜南县| 宁夏| 满洲里市| 杭锦后旗| 东阿县| 柳林县| 浦县| 民乐县| 灌阳县| 乌拉特中旗| 奇台县| 荣成市| 石阡县| 广平县| 新密市| 安顺市| 海口市| 新河县| 军事| 通化县| 卢氏县| 改则县| 鄂托克旗| 卓资县| 始兴县| 巴楚县| 沭阳县| 来凤县| 留坝县|