找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discovery Science; 19th International C Toon Calders,Michelangelo Ceci,Donato Malerba Conference proceedings 2016 Springer International Pu

[復(fù)制鏈接]
查看: 41889|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:07:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Discovery Science
副標(biāo)題19th International C
編輯Toon Calders,Michelangelo Ceci,Donato Malerba
視頻videohttp://file.papertrans.cn/282/281042/281042.mp4
概述Includes supplementary material:
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Discovery Science; 19th International C Toon Calders,Michelangelo Ceci,Donato Malerba Conference proceedings 2016 Springer International Pu
描述This book constitutes the proceedings of the 17th International Conference on Discovery Science, DS 2016, held in banff, AB, Canada in October 2015. The 30 full papers presented together with 5 abstracts of invited talks in this volume were carefullyreviewed and selected from 60 submissions.The conference focuses on following topics: Advances in the development and analysis of methods for discovering scienti?c knowledge, coming from machine learning, data mining, and intelligent data analysis, as well as their application in various scienti?c domains..
出版日期Conference proceedings 2016
關(guān)鍵詞data mining; evolving networks; knowledge discovery; online social networks; pattern mining; algorithm an
版次1
doihttps://doi.org/10.1007/978-3-319-46307-0
isbn_softcover978-3-319-46306-3
isbn_ebook978-3-319-46307-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書(shū)目名稱Discovery Science影響因子(影響力)




書(shū)目名稱Discovery Science影響因子(影響力)學(xué)科排名




書(shū)目名稱Discovery Science網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Discovery Science網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Discovery Science被引頻次




書(shū)目名稱Discovery Science被引頻次學(xué)科排名




書(shū)目名稱Discovery Science年度引用




書(shū)目名稱Discovery Science年度引用學(xué)科排名




書(shū)目名稱Discovery Science讀者反饋




書(shū)目名稱Discovery Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:29 | 只看該作者
Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototypexisting software, whereas more complex classifiers would require costly software adaptations. In order to predict a time series of instances, we construct a meta classification layer. We then evaluate our model on the data of 180 locomotive tours by leave one out classification. The results show tha
板凳
發(fā)表于 2025-3-22 01:44:24 | 只看該作者
地板
發(fā)表于 2025-3-22 08:13:00 | 只看該作者
5#
發(fā)表于 2025-3-22 10:34:53 | 只看該作者
6#
發(fā)表于 2025-3-22 13:26:32 | 只看該作者
7#
發(fā)表于 2025-3-22 18:18:32 | 只看該作者
8#
發(fā)表于 2025-3-22 22:39:37 | 只看該作者
https://doi.org/10.1007/978-3-658-01919-8of focusing on attribute subset selection, we explore an alternative promising approach consisting of using all available textual information. The problem of bug-fix time estimation is then mapped to a text categorization problem. We consider a multi-topic Supervised Latent Dirichlet Allocation (.)
9#
發(fā)表于 2025-3-23 02:00:17 | 只看該作者
10#
發(fā)表于 2025-3-23 09:22:52 | 只看該作者
Second-Order-Faktorenanalyse (SFA)r law and the number of edges increase as a function of time. Therefore, we discuss a sequential sampling method with forgetting factor to sample the evolving ego network stream. This method captures the most active and recent nodes from the network while preserving the tie strengths between them an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳江县| 深泽县| 永宁县| 普兰店市| 渑池县| 滨州市| 正宁县| 万山特区| 金阳县| 荆州市| 兴城市| 石嘴山市| 同仁县| 明溪县| 罗源县| 屏东县| 新田县| 根河市| 应城市| 克什克腾旗| 永仁县| 方正县| 雷州市| 沙雅县| 古浪县| 淮北市| 聂荣县| 东山县| 贡嘎县| 阳泉市| 长丰县| 盐源县| 晋州市| 洮南市| 湛江市| 穆棱市| 金门县| 定兴县| 郯城县| 贵定县| 拉萨市|