找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; V. V. Aristov Book 2001 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Jefferson
31#
發(fā)表于 2025-3-26 21:58:46 | 只看該作者
Jens Kleinert,Isabel Hamm,Marion Sulprizioes intrinsic to computational mathematics based on notions of approximation and convergence. In contrast, for example, to the physical and engineering ideas of Monte Carlo simulation, the direct approaches (besides the obvious physical analogies) appeal originally to clear mathematical images. Howev
32#
發(fā)表于 2025-3-27 04:11:22 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8tion in the collision operators [.–.]. Note, that the other discrete velocity approaches with constant coefficients in the quadratic form approximating the right-hand side of the Boltzmann equation are developed in recent years [.–.]. Such numerical schemes are attractive due to the simple structure
33#
發(fā)表于 2025-3-27 05:47:31 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8) being extended to a discrete level. The concept of conservativity has long been abandoned in computational mathematics (see, for example, [.,.]). Evident advantages of such kind schemes have been verified in wide practical experience.
34#
發(fā)表于 2025-3-27 11:17:00 | 只看該作者
https://doi.org/10.1007/978-3-662-50389-8-dimensional problems. And although the use and analysis of parallel algorithms in the dynamics of rarefied gases was initiated only in the last few years, our description of state of art in this field will be out of date as soon as it is published. Nevertheless, we can note the main features of sch
35#
發(fā)表于 2025-3-27 15:13:50 | 只看該作者
36#
發(fā)表于 2025-3-27 18:43:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:54:47 | 只看該作者
38#
發(fā)表于 2025-3-28 02:14:26 | 只看該作者
39#
發(fā)表于 2025-3-28 08:39:32 | 只看該作者
40#
發(fā)表于 2025-3-28 12:14:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐亭县| 中西区| 景东| 宁远县| 嘉禾县| 即墨市| 隆安县| 静安区| 鄂温| 江油市| 正蓝旗| 澄江县| 依兰县| 平安县| 桐庐县| 泸定县| 伊春市| 临武县| 盈江县| 安平县| 囊谦县| 句容市| 贞丰县| 台东市| 满洲里市| 安多县| 河曲县| 深圳市| 仲巴县| 平武县| 科尔| 麻江县| 荆州市| 桐柏县| 襄垣县| 华容县| 若尔盖县| 陵川县| 朔州市| 务川| 夏河县|