找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimensionality Reduction with Unsupervised Nearest Neighbors; Oliver Kramer Book 2013 Springer-Verlag Berlin Heidelberg 2013 Computational

[復(fù)制鏈接]
樓主: oxidation
21#
發(fā)表于 2025-3-25 05:08:30 | 只看該作者
22#
發(fā)表于 2025-3-25 07:46:55 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:51 | 只看該作者
Sozialwissenschaftliche Konflikttheorienthods have been introduced in the past. For large data sets, efficient methods are required. With UNN and its variants, we have introduced a fast and efficient dimensionality reduction method. All UNN variants compute an embedding in .(..) and can be accelerated to .(. log.), when space partitioning
24#
發(fā)表于 2025-3-25 17:48:03 | 只看該作者
Book 2013, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results..?.
25#
發(fā)表于 2025-3-25 22:08:37 | 只看該作者
1868-4394 ta sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results..?.978-3-662-51895-3978-3-642-38652-7Series ISSN 1868-4394 Series E-ISSN 1868-4408
26#
發(fā)表于 2025-3-26 01:25:58 | 只看該作者
Dimensionality Reduction with Unsupervised Nearest Neighbors
27#
發(fā)表于 2025-3-26 07:28:36 | 只看該作者
Silke L. Schneider,Verena Ortmannsraphs like breadth-first and depth-first search to advanced reinforcement strategies for learning of complex behaviors in uncertain environments. Many AI research objectives aim at the solution of special problem classes. Subareas like speech processing have shown impressive achievements in recent years that come close to human abilities.
28#
發(fā)表于 2025-3-26 11:33:22 | 只看該作者
Sozialwissenschaftliche Forschung und Praxisdimensions. Variants for multi-label classification, regression, and semi supervised learning settings allow the application to a broad spectrum of machine learning problems. Decision theory gives valuable insights into the characteristics of nearest neighbor learning results.
29#
發(fā)表于 2025-3-26 12:44:58 | 只看該作者
30#
發(fā)表于 2025-3-26 20:24:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
二连浩特市| 锡林郭勒盟| 永善县| 阿鲁科尔沁旗| 乌什县| 营山县| 南充市| 阆中市| 喀喇沁旗| 武川县| 景谷| 宁乡县| 通山县| 兴仁县| 高淳县| 冀州市| 南宁市| 若羌县| 永州市| 墨竹工卡县| 康平县| 和平县| 临城县| 临洮县| 武乡县| 洪江市| 乐都县| 额济纳旗| 兴业县| 堆龙德庆县| 商城县| 舟曲县| 靖宇县| 崇仁县| 娄烦县| 东至县| 长宁县| 商洛市| 安多县| 宜兰市| 景泰县|