找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension and Recurrence in Hyperbolic Dynamics; Luis Barreira Book 2008 Birkh?user Basel 2008 calculus.dimension theory.hyperbolic set.ma

[復(fù)制鏈接]
樓主: Obsolescent
11#
發(fā)表于 2025-3-23 11:55:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:38 | 只看該作者
Sozialp?dagogik – P?dagogik des Sozialenerved in Section 3.1, one of the motivations for the study of geometric constructions is precisely the study of the dimension of invariant sets of hyperbolic dynamics. We show in this chapter that indeed a similar approach can be effected for repellers and hyperbolic sets of conformal maps, using Ma
13#
發(fā)表于 2025-3-23 18:56:49 | 只看該作者
Sozialp?dagogik – P?dagogik des Sozialenional version of the existence of ergodic measures of maximal entropy. A crucial difference is that while the entropy map is upper semicontinuous, the map ν→dim. ν is neither upper semicontinuous nor lower semicontinuous. Our approach is based on the thermodynamic formalism. It turns out that for a
14#
發(fā)表于 2025-3-24 00:54:34 | 只看該作者
Vernachl?ssigung, Misshandlung, Missbrauchubarea of the dimension theory of dynamical systems. Briefly speaking, it studies the complexity of the level sets of invariant local quantities obtained from a dynamical system. For example, we can consider Birkhoff averages, Lyapunov exponents, pointwise dimensions, and local entropies. These func
15#
發(fā)表于 2025-3-24 03:26:26 | 只看該作者
Intelligenzminderung (Geistige Behinderung)namical systems and other invariant local quantities, besides the pointwise dimension considered in (6.1). With the purpose of unifying the theory, in 9 Barreira, Pesin and Schmeling proposed a general concept of multifractal analysis that we describe in this chapter. In particular, this provides ma
16#
發(fā)表于 2025-3-24 10:11:16 | 只看該作者
Ute Ziegenhain PD Dr.,Rüdiger von Kriess. These spectra are obtained from multifractal decompositions such as the one in (7.1). In particular, we possess very detailed information from the ergodic, topological, and dimensional points of view about the level sets . in each multifractal decomposition. On the other hand, we gave no nontrivi
17#
發(fā)表于 2025-3-24 12:56:27 | 只看該作者
18#
發(fā)表于 2025-3-24 16:13:19 | 只看該作者
Andreas Borchert,Susanne Maurerlocal entropy, and pointwise dimension. However, the theory of multifractal analysis described in the former chapters only considers separately each of these local quantities. This led Barreira, Saussol and Schmeling to develop in 20 a multidimensional version of the theory of multifractal analysis.
19#
發(fā)表于 2025-3-24 22:41:07 | 只看該作者
20#
發(fā)表于 2025-3-25 03:06:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐山市| 扎赉特旗| 宿迁市| 密云县| 济阳县| 绥芬河市| 卢龙县| 奈曼旗| 昌吉市| 武清区| 平远县| 斗六市| 申扎县| 泗洪县| 卓资县| 米泉市| 乌鲁木齐县| 定州市| 栖霞市| 德清县| 犍为县| 巨鹿县| 汾阳市| 台山市| 巴彦县| 博白县| 平谷区| 连云港市| 什邡市| 读书| 延庆县| 二连浩特市| 兴隆县| 五河县| 镇赉县| 绥棱县| 余干县| 新蔡县| 龙州县| 西和县| 偏关县|