找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffusion in Social Networks; Paulo Shakarian,Abhivav Bhatnagar,Ruocheng Guo Book 2015 The Author(s) 2015 artificial intelligence.diffusio

[復制鏈接]
樓主: Suture
31#
發(fā)表于 2025-3-26 23:05:35 | 只看該作者
32#
發(fā)表于 2025-3-27 04:32:49 | 只看該作者
Book 2015es diffusion models from the fields of computer science (independent cascade and linear threshold), sociology (tipping models), physics (voter models), biology (evolutionary models), and epidemiology (SIR/SIS and related models). A variety of properties and problems related to these models are discu
33#
發(fā)表于 2025-3-27 05:25:49 | 只看該作者
Introduction, topic from multiple fields. The availability of large social network datasets over nearly the past two decades have made it possible to explore network diffusion like never before. Having said that, the materials covered in this book is not limited to the online platforms, but rather are thought to
34#
發(fā)表于 2025-3-27 13:12:08 | 只看該作者
35#
發(fā)表于 2025-3-27 15:35:53 | 只看該作者
The Tipping Model and the Minimum Seed Problem,ghbors currently exhibit the same. A key problem, with respect to this model, is to select an initial “seed” set from the network such that the entire network adopts any behavior given to the seed. In this chapter, we investigate the problem of identifying a seed set of minimum size—which is NP-hard
36#
發(fā)表于 2025-3-27 21:04:26 | 只看該作者
The Independent Cascade and Linear Threshold Models,We describe different properties of these models and how these properties affect solving problems such as influence maximization and influence spread. We describe approaches to address influence maximization problem in independent cascade model and linear threshold model that rely on the maximizatio
37#
發(fā)表于 2025-3-27 22:30:27 | 只看該作者
38#
發(fā)表于 2025-3-28 05:13:06 | 只看該作者
39#
發(fā)表于 2025-3-28 10:16:21 | 只看該作者
Examining Diffusion in the Real World,this chapter, we study diffusion processes from a data-driven perspective—specifiably reviewing the early identification of information cascades that will diffuse through a large portion of the network.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
三门峡市| 四子王旗| 怀柔区| 太和县| 韶关市| 龙陵县| 寻甸| 剑阁县| 湟中县| 会东县| 哈密市| 鲁甸县| 松溪县| 沈丘县| 承德县| 芜湖县| 汽车| 阳信县| 泽普县| 习水县| 平顺县| 昆明市| 和顺县| 镇江市| 财经| 安国市| 瑞丽市| 外汇| 淳安县| 宣威市| 崇左市| 普兰县| 高邑县| 南丰县| 易门县| 大渡口区| 吉林省| 邓州市| 吉首市| 青神县| 墨脱县|