找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentialgeometrie; Heinrich Brauner Book 1981 Springer Fachmedien Wiesbaden 1981 Ableitung.Analysis.Diffeomorphismus.Differentialgeome

[復(fù)制鏈接]
樓主: Polk
11#
發(fā)表于 2025-3-23 13:11:01 | 只看該作者
,Geometrie auf Fl?chen in ?,,Der Tangentialvektorraum einer .-Fl?che in ?. ist als Unterraum eines Tangentialvektorraumes von ?. ein euklidischer Vektorraum. Damit wird auf einem .-Blatt . ? ?. ein metrisches Tensorfeld definiert; eine Immersion .: . → ?. bestimmt ein metrisches Tensorfeld auf . ? ?..
12#
發(fā)表于 2025-3-23 15:27:19 | 只看該作者
,Riemannsche R?ume,In Verallgemeinerung des Begriffes Blatt definieren wir differenzierbare Mannigfaltigkeiten und studieren auf diesen differenzierbare Abbildungen. Die Zerlegung der Eins gestattet es, lokale Begriffsbildungen auf Mannigfaltigkeiten auszudehnen.
13#
發(fā)表于 2025-3-23 21:20:15 | 只看該作者
https://doi.org/10.1007/978-3-322-89712-1Ableitung; Analysis; Diffeomorphismus; Differentialgeometrie; Geometrie; Gleichung; Krümmung; Mannigfaltigk
14#
發(fā)表于 2025-3-23 23:40:51 | 只看該作者
978-3-528-03809-0Springer Fachmedien Wiesbaden 1981
15#
發(fā)表于 2025-3-24 05:11:13 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:04 | 只看該作者
D. Marc Kilgour,Herb Kunze,Xu Wanger Tr?germenge kommen einer Kurve zus?tzliche Eigenschaften zu, die vom Weg herrühren. Eine Aussage über eine Kurve hei?t eine geometrische Aussage, wenn sie gegen Parameterwechsel invariant ist und bei Bewegungen erhalten bleibt. Eine Punktmenge in ?. kann Tr?germenge von Kurven mit verschiedenen geometrischen Eigenschaften sein.
17#
發(fā)表于 2025-3-24 12:31:15 | 只看該作者
18#
發(fā)表于 2025-3-24 15:12:28 | 只看該作者
19#
發(fā)表于 2025-3-24 19:43:38 | 只看該作者
,Differentialgeometrie der Kurven in ?,er Tr?germenge kommen einer Kurve zus?tzliche Eigenschaften zu, die vom Weg herrühren. Eine Aussage über eine Kurve hei?t eine geometrische Aussage, wenn sie gegen Parameterwechsel invariant ist und bei Bewegungen erhalten bleibt. Eine Punktmenge in ?. kann Tr?germenge von Kurven mit verschiedenen geometrischen Eigenschaften sein.
20#
發(fā)表于 2025-3-25 03:11:20 | 只看該作者
,Krümmungstheorie der Fl?chen in ?,rt auf die Gleichung von Gau?. Der Normalanteil definiert den Gau?-Operator auf ., der jedem normierten Normalfeld von . ein symmetrisches 2-Tensorfeld auf . zuordnet; eine Immersion .: . ?. bestimmt bezüglich jedes normierten Normalfeldes l?ngs . ein Gau?sches Tensorfeld auf . ? ?..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松江区| 怀安县| 博罗县| 新余市| 大洼县| 黑河市| 深圳市| 洛浦县| 赤壁市| 常德市| 盱眙县| 栖霞市| 宁乡县| 阜南县| 通道| 马尔康县| 津南区| 怀安县| 濮阳市| 汉沽区| 泸州市| 钟祥市| 苗栗县| 浦北县| 丰宁| 仙桃市| 永寿县| 奉贤区| 颍上县| 当阳市| 宁蒗| 台北县| 横峰县| 天峻县| 尉氏县| 宾阳县| 浪卡子县| 连云港市| 沙洋县| 青岛市| 缙云县|