找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentialgeometrie; Kurven - Fl?chen - M Wolfgang Kühnel Textbook 20084th edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: 有判斷力
11#
發(fā)表于 2025-3-23 09:45:31 | 只看該作者
,Lokale Fl?chentheorie,ales Gebilde beschreiben, eben eine parametrisierte Fl?che. Dabei sollte unter dem differentialgeometrischen Gesichtspunkt eine Fl?che nicht nur durch eine differenzierbare Abbildung in zwei reellen Parametern beschrieben werden, sondern sie sollte eine . derart zulassen, daΒ in jedem Punkt eine lin
12#
發(fā)表于 2025-3-23 15:03:53 | 只看該作者
,Die innere Geometrie von Fl?chen, ist die innere Geometrie einer 2-dimensionalen Fl?che diejenige, die von rein 2-dimensionalen Lebewesen (den sogenannten ?Flachl?ndern“ oder auch ?Fl?chenl?ndern“.) erkannt werden kann, ohne Kenntnis einer dritten Dimension. L?ngen und Winkel geh?ren sicher dazu. Es stellt sich dabei die Frage, wel
13#
發(fā)表于 2025-3-23 21:53:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:52 | 只看該作者
,Der Krümmungstensor,ng (und damit der Name) wird klar beschrieben durch das . 4.16 bzw. 4.20. Es ist dabei von groΒer Bedeutung, daΒ diese linke Seite der GauΒ-Gleichung nur von der ersten Fundamentalform bzw. nur von der kovarianten Ableitung abh?ngt: . im Koszul-Kalkül bzw. . im Ricci-Kalkül (eigentlich ... statt ...
15#
發(fā)表于 2025-3-24 04:40:15 | 只看該作者
16#
發(fā)表于 2025-3-24 08:35:32 | 只看該作者
17#
發(fā)表于 2025-3-24 12:58:39 | 只看該作者
18#
發(fā)表于 2025-3-24 16:42:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:49 | 只看該作者
20#
發(fā)表于 2025-3-25 00:51:10 | 只看該作者
Simone Cagno,Kevin Hellemans,Koen Janssens ist die innere Geometrie einer 2-dimensionalen Fl?che diejenige, die von rein 2-dimensionalen Lebewesen (den sogenannten ?Flachl?ndern“ oder auch ?Fl?chenl?ndern“.) erkannt werden kann, ohne Kenntnis einer dritten Dimension. L?ngen und Winkel geh?ren sicher dazu. Es stellt sich dabei die Frage, wel
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
綦江县| 富阳市| 称多县| 肥东县| 沁阳市| 大方县| 彭阳县| 斗六市| 涞源县| 高碑店市| 长沙县| 双辽市| 巩留县| 金堂县| 泰兴市| 棋牌| 安仁县| 沁源县| 江口县| 长岛县| 平顺县| 定远县| 禄丰县| 霸州市| 衡东县| 澎湖县| 乐安县| 皋兰县| 忻州市| 绍兴市| 罗甸县| 镇安县| 塘沽区| 灵璧县| 招远市| 莒南县| 汕头市| 岑巩县| 台江县| 谢通门县| 隆林|