找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential and Riemannian Manifolds; Serge Lang Textbook 1995Latest edition Springer-Verlag New York, Inc. 1995 De Rham cohomology.Hodge

[復(fù)制鏈接]
樓主: Scuttle
41#
發(fā)表于 2025-3-28 15:19:40 | 只看該作者
42#
發(fā)表于 2025-3-28 22:38:43 | 只看該作者
,Stokes’ Theorem,If . is a manifold and . a submanifold, then any differential form on . induces a form on .. We can view this as a very special case of the inverse image of a form, under the embedding (injection) map.
43#
發(fā)表于 2025-3-29 01:56:05 | 只看該作者
Differential Calculus,my book on real analysis [La 93] give a self-contained and complete treatment for Banach spaces. We summarize certain facts concerning their properties as topological vector spaces, and then we summarize differential calculus. . and start immediately with Chapter II if the reader is accustomed to th
44#
發(fā)表于 2025-3-29 05:10:16 | 只看該作者
45#
發(fā)表于 2025-3-29 07:29:28 | 只看該作者
Vector Bundles,al glueing procedure can be used to construct more general objects known as vector bundles, which give powerful invariants of a given manifold. (For an interesting theorem see Mazur [Maz 61].) In this chapter, we develop purely formally certain functorial constructions having to do with vector bundl
46#
發(fā)表于 2025-3-29 13:03:22 | 只看該作者
Operations on Vector Fields and Differential Forms,g forms.” Applying it to the tangent bundle, we call the sections of our new bundle differential forms. One can define formally certain relations between functions, vector fields, and differential forms which lie at the foundations of differential and Riemannian geometry. We shall give the basic sys
47#
發(fā)表于 2025-3-29 19:13:09 | 只看該作者
48#
發(fā)表于 2025-3-29 21:25:04 | 只看該作者
Covariant Derivatives and Geodesics,ssumed to be C. unless otherwise specified. We let X be a manifold. We denote the .-vector space of vector fields by ΓT(X). Observe that ΓT(X) is also a module over the ring of functions.We let π:TX →Xbe the natural map of the tangent bundle onto X.
49#
發(fā)表于 2025-3-30 00:02:18 | 只看該作者
Volume Forms,ose extension to the infinite dimensional case is not evident. So this chapter is devoted to these forms of maximal degree. In the next chapter, we shall study how to integrate them, so the present chapter also provides a transition from the differential theory to the integration theory.
50#
發(fā)表于 2025-3-30 04:13:17 | 只看該作者
,Applications of Stokes’ Theorem,the computation of the maximal de Rham cohomology (the space of all forms of maximal degree modulo the subspace of exact forms); some come from Riemannian geometry; and some come from complex manifolds, as in Cauchy’s theorem and the Poincaré residue theorem. I hope that the selection of topics will
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园市| 隆安县| 德钦县| 玛沁县| 澄迈县| 板桥市| 邵武市| 南通市| 即墨市| 永新县| 灵寿县| 东源县| 格尔木市| 山西省| 慈溪市| 独山县| 台中县| 吉水县| 仪征市| 封丘县| 聂拉木县| 盘锦市| 琼结县| 东丽区| 天镇县| 商河县| SHOW| 柳河县| 南丰县| 南通市| 绥阳县| 天等县| 凌海市| 卫辉市| 黄陵县| 乾安县| 平南县| 咸宁市| 阿拉尔市| 竹山县| 巴塘县|