找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Topology of Complex Surfaces; Elliptic Surfaces wi John W. Morgan,Kieran G. O’Grady Book 1993 Springer-Verlag Berlin Heidelber

[復制鏈接]
查看: 26464|回復: 38
樓主
發(fā)表于 2025-3-21 17:53:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Differential Topology of Complex Surfaces
副標題Elliptic Surfaces wi
編輯John W. Morgan,Kieran G. O’Grady
視頻videohttp://file.papertrans.cn/279/278806/278806.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Differential Topology of Complex Surfaces; Elliptic Surfaces wi John W. Morgan,Kieran G. O’Grady Book 1993 Springer-Verlag Berlin Heidelber
描述This book is about the smooth classification of a certainclass of algebraicsurfaces, namely regular ellipticsurfaces of geometric genus one, i.e. elliptic surfaces withb1 = 0 and b2+ = 3. The authors give a completeclassification of these surfaces up to diffeomorphism. Theyachieve this result by partially computing one ofDonalson‘spolynomial invariants. The computation is carried outusingtechniques from algebraic geometry. In these computationsboth thebasic facts about the Donaldson invariants and therelationship of themoduli space of ASD connections with themoduli space of stable bundles are assumed known. Somefamiliarity with the basic facts of the theory of moduliofsheaves and bundles on a surface is also assumed. This workgives agood and fairly comprehensive indication of how themethods of algebraicgeometry can be used to computeDonaldson invariants.
出版日期Book 1993
關(guān)鍵詞Blowing up; diffeomorphism; differential topology; elliptic surfaces; four-manifolfds; moduli space
版次1
doihttps://doi.org/10.1007/BFb0086765
isbn_softcover978-3-540-56674-8
isbn_ebook978-3-540-47628-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

書目名稱Differential Topology of Complex Surfaces影響因子(影響力)




書目名稱Differential Topology of Complex Surfaces影響因子(影響力)學科排名




書目名稱Differential Topology of Complex Surfaces網(wǎng)絡(luò)公開度




書目名稱Differential Topology of Complex Surfaces網(wǎng)絡(luò)公開度學科排名




書目名稱Differential Topology of Complex Surfaces被引頻次




書目名稱Differential Topology of Complex Surfaces被引頻次學科排名




書目名稱Differential Topology of Complex Surfaces年度引用




書目名稱Differential Topology of Complex Surfaces年度引用學科排名




書目名稱Differential Topology of Complex Surfaces讀者反饋




書目名稱Differential Topology of Complex Surfaces讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:14:06 | 只看該作者
Differential Topology of Complex Surfaces978-3-540-47628-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 02:57:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:42:07 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:34 | 只看該作者
6#
發(fā)表于 2025-3-22 16:55:27 | 只看該作者
Book 1993ptic surfaces withb1 = 0 and b2+ = 3. The authors give a completeclassification of these surfaces up to diffeomorphism. Theyachieve this result by partially computing one ofDonalson‘spolynomial invariants. The computation is carried outusingtechniques from algebraic geometry. In these computationsbo
7#
發(fā)表于 2025-3-22 21:07:10 | 只看該作者
8#
發(fā)表于 2025-3-22 23:32:11 | 只看該作者
9#
發(fā)表于 2025-3-23 02:30:50 | 只看該作者
Representatives for classes in the image of the ,-map,
10#
發(fā)表于 2025-3-23 09:36:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
拉孜县| 和顺县| 江山市| 虎林市| 梁河县| 钦州市| 岳普湖县| 南充市| 吉木萨尔县| 茂名市| 麻城市| 汝州市| 庄浪县| 叙永县| 滨海县| 杂多县| 曲阳县| 江油市| 三原县| 大理市| 简阳市| 周口市| 卓资县| 松阳县| 遵义市| 保靖县| 胶南市| 九寨沟县| 和林格尔县| 漳州市| 武胜县| 体育| 张家川| 阳山县| 南京市| 邯郸县| 红桥区| 东乌| 鄂托克旗| 建瓯市| 邛崃市|