找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Varieties with Degenerate Gauss Maps; Maks A. Akivis,Vladislav V. Goldberg Textbook 2004 Springer-Verlag New York

[復(fù)制鏈接]
樓主: Suture
21#
發(fā)表于 2025-3-25 07:07:47 | 只看該作者
1613-5237 the main methods of differential geometry, namely, the methods of moving frames and exterior differential forms as well as tensor methods. By means of these methods, the authors discover the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, fin
22#
發(fā)表于 2025-3-25 07:43:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:04 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:23 | 只看該作者
Wie der Schall soziale R?ume schafftauss maps without singularities, in Section 3.4, we introduce and investigate an important class of varieties with degenerate Gauss maps without singularities, the so-called Sacksteder-Bourgain hypersurface, in the affine space A., and in Section 3.5, we consider complete parabolic varieties in Riemannian spaces of constant curvature.
25#
發(fā)表于 2025-3-25 22:14:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:34 | 只看該作者
Foundational Material,we consider the main topics associated with differentiable manifolds: tangent spaces, frame bundles, mappings, exterior differential calculus, Cartan’s lemma, completely integrable systems, the Frobenius theorem, Cartan’s test for a system in involution, the structure equations of a differentiable m
27#
發(fā)表于 2025-3-26 07:55:32 | 只看該作者
Varieties in Projective Spaces and Their Gauss Maps,ntal tensor and the second fundamental form, and the asymptotic lines and asymptotic cone) associated with a variety in a projective space ?., in Section 2.3, we define the rank of a variety and varieties with degenerate Gauss maps. In Section 2.4, we consider the main examples of varieties with deg
28#
發(fā)表于 2025-3-26 08:38:16 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资阳市| 龙口市| 延长县| 丰台区| 西和县| 呼图壁县| 娱乐| 平定县| 西林县| 铜梁县| 罗源县| 温州市| 凌海市| 天等县| 德保县| 库伦旗| 开化县| 吕梁市| 勐海县| 吉安市| 金昌市| 永福县| 阜平县| 封开县| 晋州市| 阆中市| 苏尼特左旗| 元朗区| 仁化县| 库伦旗| 嘉祥县| 民县| 林西县| 罗山县| 合阳县| 哈尔滨市| 望都县| 临邑县| 武冈市| 青海省| 承德市|