找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry of Lightlike Submanifolds; Krishan L. Duggal,Bayram Sahin Book 2010 Birkh?user Basel 2010 Semi-Riemannian geometry.d

[復(fù)制鏈接]
樓主: 重婚
11#
發(fā)表于 2025-3-23 12:12:01 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:48 | 只看該作者
Applications of lightlike geometry,In this chapter we present applications of lightlike geometry in the study of null 2-surfaces in spacetimes, lightlike versions of harmonic maps and morphisms, CRstructures in general relativity and lightlike contact geometry in physics.
13#
發(fā)表于 2025-3-23 18:35:14 | 只看該作者
Applications of lightlike hypersurfaces,rst, we deal with .. We prove a . and relate it with physically significant works of Galloway [197] on null hypersurfaces in general relativity, Ashtekar and Krishnan’s work [16] on dynamical horizons and Sultana-Dyer’s work [378, 379] on ., with related references. Secondly, we present the latest work on . [20].
14#
發(fā)表于 2025-3-23 23:11:40 | 只看該作者
15#
發(fā)表于 2025-3-24 04:27:31 | 只看該作者
Rationalit?t und Egoismus im Recht r every pair (.) of the points . ∈ .. This function . is known as the Euclidean metric in .. Then, we call . with the metric . the .-dimensional Euclidean space. Consider . a real .-dimensional vector space with a symmetric bilinear mapping .: . × . → .. We say that g is positive (negative) definite
16#
發(fā)表于 2025-3-24 07:27:42 | 只看該作者
https://doi.org/10.1007/978-3-658-43825-8from the point of physics lightlike hypersurfaces are of importance as they are models of various types of horizons, such as Killing, dynamical and conformal horizons, studied in general relativity (see some details in Chapter 3). However, due to the degenerate metric of a lightlike submanifold ., o
17#
發(fā)表于 2025-3-24 14:38:21 | 只看該作者
Rationalit?t und Umweltverhaltenrst, we deal with .. We prove a . and relate it with physically significant works of Galloway [197] on null hypersurfaces in general relativity, Ashtekar and Krishnan’s work [16] on dynamical horizons and Sultana-Dyer’s work [378, 379] on ., with related references. Secondly, we present the latest w
18#
發(fā)表于 2025-3-24 16:51:21 | 只看該作者
Rationalit?ten des Kinderschutzesdegenerate case [45, 133 373], CR-lightlike submanifolds are non-trivial (i.e., they do not include invariant (complex) and real parts). Since then considerable work has been done on new concepts to obtain a variety of classes of lightlike submanifolds. In this chapter we present up-to-date new resu
19#
發(fā)表于 2025-3-24 19:05:15 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泉州市| 保德县| 历史| 墨江| 灵璧县| 介休市| 疏附县| 二手房| 肇源县| 连山| 祥云县| 莒南县| 伽师县| 涟水县| 法库县| 托克逊县| 阿勒泰市| 兴义市| 莒南县| 吕梁市| 张家口市| 大荔县| 克东县| 弥渡县| 赤水市| 汉寿县| 正定县| 曲水县| 佳木斯市| 岐山县| 亳州市| 城口县| 望都县| 德安县| 宁安市| 木兰县| 增城市| 祁连县| 当涂县| 綦江县| 成都市|