找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and General Relativity; Volume 1 Canbin Liang,Bin Zhou Textbook 2023 Science Press 2023 Differential Manifold.Tensor

[復(fù)制鏈接]
樓主: VIRAL
21#
發(fā)表于 2025-3-25 05:01:52 | 只看該作者
22#
發(fā)表于 2025-3-25 08:37:19 | 只看該作者
Lie Derivatives, Killing Fields and Hypersurfaces,Suppose . and . are manifolds (whose dimensions can be different) and . is a smooth map. Let . and . represent the collection of all smooth tensor fields of type (.,?.) on . and ., respectively. . naturally induces a series of maps as follows.
23#
發(fā)表于 2025-3-25 13:46:23 | 只看該作者
Differential Forms and Their Integrals,We first introduce “forms” on an .-dimensional vector space ., and then discuss “differential forms” on an .-dimensional manifold ..
24#
發(fā)表于 2025-3-25 16:29:43 | 只看該作者
,Solving Einstein’s Equation,Solving Einstein’s Equation is an important problem in general relativity. Many exact solutions play important roles in the study and development of general relativity. Since Einstein’s equation is a highly nonlinear partial differential equation, finding an (exact) solution in the general case is rather difficult.
25#
發(fā)表于 2025-3-25 21:58:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:24:24 | 只看該作者
Special Relativity,nd time are treated separately in specific coordinate systems. However, after acquiring an understanding of differential geometry in the previous chapters, one can also use a 4-dimensional “global” way to formulate special relativity, which not only makes it easier to grasp the essence of the theory
27#
發(fā)表于 2025-3-26 07:16:01 | 只看該作者
28#
發(fā)表于 2025-3-26 12:26:24 | 只看該作者
Schwarzschild Spacetimes,sed mainly on finding the solution. In view of the essentialness of the Schwarzschild solution, this chapter will further discuss several intimately related problems: Sect.?. discusses the timelike and null geodesics in Schwarzschild spacetime; Sect.?. introduces three experimental tests of general
29#
發(fā)表于 2025-3-26 15:06:44 | 只看該作者
Cosmology I,out, and drawn conclusions concerning the universe. However, it is only after the development of general relativity that cosmology became a genuine science. From the point of view of general relativity, the universe?is the maximal spacetime containing everything in Nature, with its curvature on larg
30#
發(fā)表于 2025-3-26 19:20:33 | 只看該作者
1868-4513 rs at various levels.Uses pedagogic features including numer.This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely appli
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 12:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宁县| 遵义县| 海伦市| 黄大仙区| 邵东县| 溆浦县| 沙田区| 连南| 财经| 吉木萨尔县| 德令哈市| 汽车| 邛崃市| 监利县| 辽阳县| 米易县| 登封市| 正宁县| 宜都市| 华宁县| 武汉市| 屯门区| 张家港市| 屏东县| 资兴市| 旬阳县| 图们市| 江口县| 商都县| 慈利县| 罗平县| 乐清市| 故城县| 徐州市| 夹江县| 蒲城县| 虞城县| 铜梁县| 织金县| 峨边| 苗栗市|