找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometric Structures and Applications; 4th International Wo Vladimir Rovenski,Pawe? Walczak,Robert Wolak Conference proceeding

[復(fù)制鏈接]
樓主: CAP
41#
發(fā)表于 2025-3-28 17:38:10 | 只看該作者
42#
發(fā)表于 2025-3-28 19:28:24 | 只看該作者
Linda A. Joyce,Nadine A. Marshalle example of coin tosses. We review the basic notions in information geometry, e.g., parametrized measure models, statistics and Fisher quadratic forms. Then we state characterizations of sufficient statistics due to Ay-Jost-Lê-Schwachh?fer and an analogous characterizations of sufficient statistics due to [.].
43#
發(fā)表于 2025-3-28 23:01:04 | 只看該作者
https://doi.org/10.1007/978-3-642-54786-7 replaced with a nonsingular skew-symmetric tensor. We study geometry of a weak .-K-contact structure, which is a weak .-contact structure, whose characteristic vector fields are Killing. We show that the distribution . of a weak .-contact manifold defines a .-foliation with an abelian Lie algebra,
44#
發(fā)表于 2025-3-29 06:23:33 | 只看該作者
How to Conduct a Clinical Trial: Overviewstructure of this kind called a weak .-Kenmotsu structure (that generalizes the notion by K.?Kenmotsu with . and its extension for . by Z.?Olszak). We show that a weak .-Kenmotsu manifold is locally the warped product ., where ., and . is equipped with a parallel skew-symmetric (1,1)-tensor . such t
45#
發(fā)表于 2025-3-29 10:38:32 | 只看該作者
46#
發(fā)表于 2025-3-29 12:05:42 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:38 | 只看該作者
Fritz E. Borgnis,Charles H. Papasrticularly, if all structure constants of the oscillator group are equal to each other, then all unit left-invariant vector fields that define a harmonic map into the unit tangent bundle with Sasaki metric are minimal.
48#
發(fā)表于 2025-3-29 21:00:42 | 只看該作者
Paul J. H. Strong,Victor Squires Manuel Moreira. This extension is particularly considered when leaves are densely packed, and the pseudogroup exhibits strong quasi-analytic behavior. Notably, this extension leads to the establishment of an association with a structural local group within such a foliated space. Application of this
49#
發(fā)表于 2025-3-30 03:22:51 | 只看該作者
50#
發(fā)表于 2025-3-30 08:00:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 石林| 利川市| 北流市| 清流县| 介休市| 开原市| 大渡口区| 徐汇区| 永年县| 永修县| 北宁市| 乌鲁木齐市| 耒阳市| 淮阳县| 万荣县| 迭部县| 盐城市| 百色市| 余庆县| 龙游县| 中卫市| 万荣县| 固安县| 昌邑市| 岑巩县| 南安市| 新建县| 祥云县| 商丘市| 雷山县| 陇川县| 黔西县| 石林| 柳林县| 镇江市| 崇义县| 黄石市| 龙里县| 图木舒克市| 德阳市|