找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometric Methods in Theoretical Physics; Physics and Geometry Ling-Lie Chau,Werner Nahm Book 1990 Springer Science+Business M

[復(fù)制鏈接]
樓主: interleukins
51#
發(fā)表于 2025-3-30 09:57:39 | 只看該作者
52#
發(fā)表于 2025-3-30 14:15:03 | 只看該作者
Copolymers near a Linear Selective Interfacein accordance with the Einstein causality of observables. For the most interesting cases of strictly renormalizable interactions (pocessing dimensionless coupling constants) as e.g. “l(fā)ocal gauge theories”, there is essentially no non-perturbative analytic result.
53#
發(fā)表于 2025-3-30 18:18:01 | 只看該作者
54#
發(fā)表于 2025-3-30 21:19:45 | 只看該作者
55#
發(fā)表于 2025-3-31 03:50:19 | 只看該作者
Geometrical Aspects of Solvable Two Dimensional Modelshe classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra.
56#
發(fā)表于 2025-3-31 06:06:35 | 只看該作者
New Kinematics (Statistics and Symmetry) in Low-Dimensional , with Applications to Conformal QFT,in accordance with the Einstein causality of observables. For the most interesting cases of strictly renormalizable interactions (pocessing dimensionless coupling constants) as e.g. “l(fā)ocal gauge theories”, there is essentially no non-perturbative analytic result.
57#
發(fā)表于 2025-3-31 09:31:32 | 只看該作者
58#
發(fā)表于 2025-3-31 16:54:21 | 只看該作者
59#
發(fā)表于 2025-3-31 18:20:47 | 只看該作者
60#
發(fā)表于 2025-3-31 23:51:20 | 只看該作者
Geometrical Aspects of Solvable Two Dimensional Modelsof motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggtests that these models are closely related. This relation is explored further in t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄯善县| 沈丘县| 伊宁市| 吕梁市| 西充县| 通州市| 昌都县| 湘阴县| 耒阳市| 山阴县| 丹凤县| 姚安县| 渑池县| 崇文区| 大关县| 铁力市| 余庆县| 普陀区| 呈贡县| 临清市| 青龙| 武义县| 曲麻莱县| 广宁县| 枣强县| 沈丘县| 新蔡县| 桃源县| 庆云县| 曲松县| 尼玛县| 丹棱县| 合川市| 昂仁县| 米易县| 潢川县| 恩平市| 南木林县| 治多县| 越西县| 张掖市|