找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometric Methods in Mathematical Physics; Proceedings of the 1 Pedro Luis García,Antonio Pérez-Rendón Conference proceedings

[復(fù)制鏈接]
樓主: 不服從
21#
發(fā)表于 2025-3-25 04:32:44 | 只看該作者
https://doi.org/10.1007/BFb0077312cosmology; field theory; gauge theory; gravity; manifold; mathematical physics; quantization
22#
發(fā)表于 2025-3-25 10:04:54 | 只看該作者
978-3-540-17816-3Springer-Verlag Berlin Heidelberg 1987
23#
發(fā)表于 2025-3-25 12:41:30 | 只看該作者
24#
發(fā)表于 2025-3-25 17:49:22 | 只看該作者
0075-8434 theory and the emphasis of the resulting proceedings volume is on superfield theory and related topics, and classical and quantized fields.978-3-540-17816-3978-3-540-47854-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
25#
發(fā)表于 2025-3-25 22:17:48 | 只看該作者
https://doi.org/10.1007/978-3-531-91957-7on the choice of a hermitian structure on the even and odd parts of a supervector space we shall call them Hermitian superalgebras. The group of automorphisms of the conformal superalgebra was determined in [Sternberg]. It was shown to have two components. In this paper we shall describe all the aut
26#
發(fā)表于 2025-3-26 00:33:04 | 只看該作者
Vision, Utopie und Pragmatismus triality principle, is convenient to define several graded Lie algebras connected with the minkowskian and the conformo-minkowskian geometry. The basic notions and tools are Clifford algebras and spinors in the modern approach. We develop a systematic method giving naturally many graded Lie algebra
27#
發(fā)表于 2025-3-26 04:42:57 | 只看該作者
https://doi.org/10.1007/978-0-387-76721-5Rogers). As a first step, we set up a variational calculus on fibered supermanifolds. Suitable definitions of the properties of local gauge and general invariance of a supermanifold field theory are given and equivalence of these invariances to generalizations of Utiyama theorem is proved. We show t
28#
發(fā)表于 2025-3-26 11:36:45 | 只看該作者
29#
發(fā)表于 2025-3-26 15:02:25 | 只看該作者
30#
發(fā)表于 2025-3-26 17:49:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 21:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙自县| 井冈山市| 郯城县| 高陵县| 错那县| 汝南县| 抚松县| 许昌市| 海安县| 沙田区| 南皮县| 白水县| 克什克腾旗| 石台县| 井陉县| 揭西县| 怀柔区| 余庆县| 专栏| 永定县| 巍山| 襄城县| 临清市| 钦州市| 略阳县| 和林格尔县| 红河县| 江津市| 叙永县| 陆川县| 红安县| 和龙市| 个旧市| 常德市| 揭西县| 泰顺县| 古田县| 太原市| 洞头县| 赤城县| 呼伦贝尔市|